
DSPL Application Programs v4.0 3-1

3 Time Based Motion
Programs

In the following application a series of moves for multiple joints are to be
completed within the specified times: t1,t2,... respectively. This means that
all motors must reach their intermediate target positions (posx, posy, posz and
posw) simultaneously. The DSPL instruction AXMOVE_T is ideal for this
application. It is important to note that a real time execution of AXMOVE_T(or
AXMOVE)with its new move parameter(s) will intercept the one in progress.
There are two ways to supply a DSPL program with target positions (and/or
other move parameters). The first method allows the host to update move
parameters using real time command CHANGE_VAR. This command is provided
with the Mx4 C++ /Visual Basic 32-bit DLL. In the second method the DSPL
retrieves the move parameters from its own table memory. Alternatively, the
DSPL can use its own floating point math for real time computation of move
parameters.

1

2

3

4

Time Based Motion Programs

3-2

1) Host updates the target positions to reach
in a specified time

In this case host updates the target points. The communication protocol between
DSPL and host programs is as follows. First, the DSPL resets flag = 0 to let
host program know it can update target points. Host uses command CHANGE_VAR
to update the target points. Upon the completion of variable update, host sets the
flag = 1 to let DSPL program know update is finished. The DSPL uses the
recently updated variables as arguments for AXMOVE_T command and resets the
flag = 0 to let the host program know that once again host is allowed to update
target points.

#define accx var2
#define posx var3
#define t var4
#define accy var5
#define posy var6
#define accz var7
#define posz var8
#define accw var9
#define posw var10
#define flag var11

#include “init_mx4.hll”

plc_program

run_m_program(move_arm)

plc_end

move_arm:
call(init_mx4) ;initialize the gains
t = 200 ;set time to 200*200µsec = 40 ms
flag = 0 ;tell the host it can update motion

; parameters
wait_until(flag == 1) ;wait until host finished updating

; parameters

 while (var1 == 1)
 axmove_t(0xf, accx, posx, t, accy, posy, t, accz, posz, t,

 accw, posw, t)

 flag = 0 ;tell host it can change move parameters

 wait_until(cpos 1 == posx);wait until move is finished
 wait_until(flag == 1) ;host sets flag upon updating motion

; parameters
wend

end

Time Based Motion Programs

DSPL Application Programs v4.0 3-3

2) DSPL calculates/retrieves the target
positions to reach in a specified time

In this case, the target points are retrieved from the Mx4 table memory. The
subroutine, get_points performs this data retrieval. The variable size holds the
number of prestored target points. To download target position to the Mx4
table memory, you may use the download position facility provided with
Mx4pro v4.

#define size var1
#define accx var2
#define posx var3
#define t var4
#define accy var5
#define posy var6
#define accz var7
#define posz var8
#define accw var9
#define posw var10
#define flag var11

#include “mx4_init.hll”

plc_program
run_m_program(move_arm)

plc_end

move_arm:
t = 200 ;set time to 200*200µsec = 40 ms
accx = 1
accy = 1
accz = 1
accw = 1

size = 500 ;the total number of moves

call(get_points)
 while (size >= 1)

axmove_t(0xf, accx, posx, t, accy, posy, t, accz, posz, t,
 accw, posw, t)

targetx = posx
call(get_points)

wait_until(cpos 1 == targetx) ;wait until move is finished
var1 = var1 - 1

 wend
end

Time Based Motion Programs

3-4

get_points:
posx = table_p(index) ;retrieve one set of 32-bit target points
index = index + 2
posy = table_p(index)
index = index + 2
posz = table_p(index)
index = index + 2
posw = table_p(index)
ret()

end

