Compiling & Downloading DSPL Programs
From C

After a DSPL program has been written, the source code text file is fed to a DSPL
compiler, which generates a binary .LOD file. This .LOD file is then fed to the
download_dspl() routine in MX4NT.DLL, which downloads the binary code to an Octavia.
The start_dspl() routine in MX4NT.DLL is used to begin execution of the DSPL program
on an Octavia.

RUNNING THE DSPL COMPILER

DSPCG's DSPL compiler is a stand-alone executable named either DSPLC32.EXE or
DSPLCO32.EXE, depending on the version. The DSPL source code text file is fed to the
compiler as a command-line argument. A second command line argument,
"/dsplc_licensed", is included as well, as license verification. So, if the user has a DSPL
text file named MY_PROG.HLL, this file can be compiled by running the following at a
Windows command prompt:

dsplco32 my_prog.hll /dsplc_licensed
The DSPL compiler will generate the following files:

DSPLCOK.TMP:
A blank file whose existence indicates that compilation was
completed. The existence of this file does not mean that there
were no errors, and it does not indicate that the resulting .LOD file
will work. This is only a flag to indicate that the compiler has
finished.

DSPLCERR.TMP:
A blank file which is only created if the compiler encounters errors
in the DSPL program. If this file exists when the compiler is
started, and no errors are encountered in the source code, the
compiler will automatically erase this file.

WINDOWS.TXT:
A text file which contains the compiler's output text messages.
Any errors in the source code will be shown in this file. If this file
shows no errors and no warnings, the DSPL file was compiled
successfully and the LOD file is ready for download.

MY_PROG.LST:
A text file which contains the DSPL program's source code, the
compiler's binary output, and flags indicating the location and

type of errors encountered, if any. This is created as a debugging
aid.

MY_PROG.LOD:
The binary data which can be downloaded to an Octavia via
DSPCG's DLL.

The DSPL compiler can be run from within a Windows application like any other external
application. For example, Windows' Shell() function can be used, with the command
line shown in the example above as its argument.

DOWNLOADING TO OCTAVIA

Once a .LOD file has been generated, it is downloaded using the download_dspl()
function in MX4NT.DLL. Function download_dspl() takes a single argument, a text string
which is the complete name of the .LOD file, including any necessary path information.
In C, the code looks like this:

download_dspl("my_prog.lod");

This function returns zero on success. Nonzero return values are error codes, as shown
in the header file MX4NT.H.

To start the Octavia executing the DSPL program, call start_dspl(), which takes no
arguments. This function also returns zero on success. This function does not block
during DSPL execution -- it only triggers DSPL execution and then returns to the caller.

Here’re the Visual Basic function and an example program that let you use the DSPL Compiler
and downloader from C.

SHELL is that function:

1. Shell Function

Used in Visual Studio

Runs an executable program and returns an integer containing the program's

process ID if it is still running.

Public Function Shell(_

ByVal Pathname As String, _

Optional ByVal Style As AppWinStyle =

AppWinStyle.MinimizedFocus, _

Optional ByVal Wait As Boolean = False, _
Optional ByVal Timeout As Integer = -1 _

) As Integer

Parameters

Pathname
Required. String. Name of the program to execute, together with any
required arguments and command-line switches. Pathname can also
include the drive and the directory path or folder.

Style

Optional. AppWinStyle. A value chosen from the AppWinStyle
enumeration corresponding to the style of the window in which the
program is to be run. If Style is omitted, Shell uses
AppWinStyle.MinimizedFocus, which starts the program minimized and

with focus.

The Style argument can have one of the following settings:

Enumeration value
AppWinStyle.Hide

AppWinStyle.NormalFocus

AppWinStyle.MinimizedFocus

AppWinStyle.MaximizedFocus

AppWinStyle.NormalNoFocus

AppWinStyle.MinimizedNoFocus

Wait

Description

The window is hidden and focus is
given to the hidden window.

The window is given focus and
displayed in its most recent size and
position.

The window is given focus and
displayed as an icon.

The window is given focus and
displayed using the entire screen.

The window is set to its most recent
size and position. The currently active
window remains in focus.

The window is displayed as an icon.
The currently active window remains
in focus.

Optional. Boolean. A value indicating whether the Shell function should
wait for completion of the program. If Wait is omitted, Shell uses False.

Timeout

Optional. Integer. The number of milliseconds to wait for completion if
Wait is True. If Timeout is omitted, Shell uses -1, which means there is no
timeout and Shell does not return until the program completes.
Therefore, if you omit Timeout or set it to -1, it is possible that Shell
might never return control to your program.

2. Example: Perform Real-time DSPL Compilation & Download

sCompiler = sMainWindowPath & '\dsplc32.exe out.hll
/DSPLC_Licensed"
Shell sCompiler, O

sCompiler = sMainWindowPath & ‘"\dsplcok.tmp"
While ((UCase(Dir(sCompiler))) <> "DSPLCOK.TMP')
" Yield to other forms
DoEvents
Wend

sCompiler = "out.lod"
download_dspl (sCompiler)

Now start dspl program.

start_dspl

reverse_lock = @

