Mx4 cnC++

User's Guide v1.1

Mx4 cnC++
User's Guide

vl.l

This documentation may not be copied, photocopied, reproduced, translated,
modified or reduced to any electronic medium or machine-readable form, in whole
or in part, without the prior written consent of DSP Control Group, Inc.

© Copyright 1991-1995 DSP Control Group, Inc.
PO Box 39331
Minneapolis, MN 55439
Phone: (612) 831-9556
FAX: (612) 831-4697

All rights reserved. Printed in the United States.

The authors and those involved in the manual's production have made every
effort to provide accurate, useful information.

Use of this product in an electro mechanical system could result in a mechanical
motion that could cause harm. DSP Control Group, Inc. is not responsible for any
accident resulting from misuse of its products.

DSPL, Mx4 cnC++ and VECTOR4 are trademarks of DSP Control Group, Inc.

Other brand names and product names are trademarks of their respective holders.

Contents

R €A TNISFIISE......ooooeoeeeeeeeeeeeeeeeseeee e v
A Quick Overview of ThisManud............ccccevvevevienienieseseee e Vi

A QUICK REFEIENCE. ... e IX

1 Introduction to MX4 CNCH+.........oooooeeeeeeeeeeeeee 1-1
Mx4 cnCH++ System DESCIiPHON.eevereeeeeeeeree e 1-1

Mx4 cnC+ Programming.........ceceeeeeeesiecieeseesreseesseeseeseesseennens 1-2

Mx4 cnC++ Computation Power & Servo Update Rate................. 1-3

MX4 CNCH+ CONLIOl LAc.eeivereecieriesiiseeee e 1-4

Why State Feedback?..........cooiiiinirseeee s 1-4

NOLCH FITEN ..o 1-5

Drive CONtrol LAW.......coceeieee e 1-5

(@070 197 (1o o [T 1-6

Cubic SpliNe CONtOUNNG......ccveveierierieriesieeee e 1-7

SYNCHIONIZAIONeeieeeiece e 1-12

2 Installing Your Mx4 cnC++ Hardware.....o. 2-1
PC/AT Mx4 cnCH+ Cabdling......c..ooererieeeeiceeesesese e 2-3

PC/AT Mx4 cnC++ J6 Connector...Motor / System Interfacing......2-4

Servo Command SIgNALS.......cveiveriereeeeeee e 2-6

Encoder FeedbacKoovviriienininieeee e 2-7

Generd Purpose External Interrupt INputs..........c.ooeeeeeeeieeneee 2-10

Logic Leve Voltages/ GND Signals........ccccceveeeveeveecieseenens 2-11

Mx4 cnC++ User'sGuidevl.1 i

Contents

PC/AT Mx4 cnC++ J3 Connector ... Inputs/ Outputs.................. 2-12
INPUES. ... 2-13
OULPULS.. ...ttt e e e s r e sne e snneennee s 2-16
General Purpose Externa Interrupt INPULS........cceeeveecieeeennens 2-17

PC/AT Mx4 cnC++ J5 Connector ... Synchronization................... 2-18

PC/AT Mx4 cnCH+ JUmper SEtiNGScocveeveeeereerieeeeseesee e 2-20

PC/AT Mx4 cnC++ Bus Specifications/ Settings........ccooeeeveveeenee. 2-20
MeEMOrY ACOIESS......ccuveeeceieie e 2-21

Memory Space Functionaity...........cooceeveneeneeinnieneeene 2-22
[0S 00 1] o TS 2-22

Verifying the Mx4 cnC++ Hardware Set-Up........ccccoveevenieneennns 2-23

Running the Mx4 cnC++Test Software.........ccccvveeveccieceennen, 2-24
S MXAPEO VB.0.eseseseseessessesesee 51

RUNNING MXAPYO ...ttt 3-3
Using the Keyboard with MX4APrO.........cccceviiiiincneenecee, 3-3
SAtING MXAPYO......coiieciie e e 3-4

Overview of Mx4Pro VECTORA SUPPOMt.......ccoververereenreriesenennens 3-5
Motor TEChNOIOGYeeiuieeiieiie e 3-6
Power TeChNOIOGY........ccoverueriirierienireeeeee e 3-8
5S05 0 = o 01070 [0 |V SR 3-9
Summary of VECTOR4 SUPPOIt......c..ceereeeeieniesiesieseesieenea 3-10

4 Methods of Programming Mx4 cnC++......ccco 4-1

Host-Based Programming........c..ccceeeeeeeriecieeseesie e seesee e s 4-1
Red-Time CommaNdS.........coovveereeiineere e 4-2
(@001 (018] 4o S 4-3

Contents

5 Mx4 cnC++ Host-Based Instruction Set............... 5-1
Host-Based Programming Command Set.........cocveeveevieccicecieesinne 5-1
T 1(F [z (L0 o PSS 5-1
INterrupt CONErOl.........coceiiiiccie e 5-1
Traectory CONtrol.........ccooeierineieseeeeee s 5-2
SySEM DIagNOSC ... 5-2
Control Parameterccceeveeeeeiene e 5-2
Open POSIION LOOPocovieiiiecieecie et 5-3
CONOUIMNG ...ttt 5-3
Fltering (OptioNal)........cooveeieeiie e 5-3

L 5-3
RESEL......eoe e s 5-4
Mx4 cNC++ RTC INSrUCHiON SEt.......cocveeieeeceeeeee e 5-4
Mx4 cnC++ State Variables........ooovevieeiiiieeeeeee e 5-5
Mx4 cnC++ Host-Based Programming Command Ligting 5-6
6 Mx4 cnC++ Host-Based Programming.............cccccceeee 6-1
Mx4 cnC++ - Host COMMUNICALION.cveeueeeeieiesiesie e 6-1
Host - MX4 cnNCH+ INterface.......ooveveeeneee e 6-2
CommuniCation ProtOCOIS........cccuvevinininieiee e 6-3
Mx4 cnC++ Dud Port RAM Organization............ccoceeeveneneneenne. 6-5
Status Registers (000h - 08Dh)c.cccveveevieeieceece e 6-5
Hardware Signature Window (08Eh - 093h)ccccevvreriennene 6-7
Parameter Updates (094h - 114h)ccceeveeivieiece e 6-8
Signature Window (115h - 11Fh) ..c..ooereeieieeeeereeeee 6-12
2nd Order Contouring Ring Buffer (120h - 3C1h) 6-13
Red Time Command (RTC) (3C2h - 3FBh)ccccevvvirenne 6-13
Interrupt Registers (3FCh - 3FFh, 7FEh, 7FFh) 6-14
Cubic Spline Contouring Ring Buffer (400h - 7F1h) 6-16
Communication Protocols Revigtedccccveveveninevencnenenen, 6-17
Handling Mx4 cnC++ Software/ Hardware Interrupts.................. 6-18

Mx4 cnC++ User'sGuidevl.1 iii

Contents

Mx4 cnC++ Host Programming... RTCs & Contouring................. 6-19
Mx4 cnC++ Hogt Programming Using C, C++, Visuad Basic or Visud
@ SR 6-28
Mx4 cnC++ Power-Up / Reset Software Initidization................... 6-29
7 Mx4 cnC++ Status & Error Reports...........ccvevvvecenen 7-1
Mx4 cnC++ Power-Up / Reset State.......ccceevveevvecviee e 7-1
Mx4 cnC++ Interrupts, Status Codes & Error Condition Reports
tothe Dua POt RAM ..o s 7-1
B VECTORA ..o 51
VECTOR4 Programming Capabilities.cceveninirinineneneeee 8-4
T I1TE= 117 (o o USSR 8-4
Control Parametercccceveeeeeieneee e 8-4
POWES SEAOE......evei i 8-5
SYSEM DIBGNOTIC ...t 8-5
9 M X4 cNC++ SPECITICALIONS......ooocoooeoeeeeeceesecee e 9-1
PEFOIMIANCE. ... 9-1
HBIOWEIE. ... 9-1
INPUE / OUEPUL ...ttt 9-1
Position Encoder Feedback ..o 9-2
= o[R 9-2
Power CoNSUMPLION........ccoviieieeieeee e 9-2
MECNBNICA........cceeeieieee e 9-2

Read Th

Mx4 cnC++ User’'s Guide v2.0

IS First

Congratulations on purchasing Mx4 cnC++, DSP Control Group's high-speed
multi-DSP based motion controller. Y ou will find Mx4 cnC++ a powerful controller
with an instruction set suitable for all coordinated motion control applications.

In conjunction with this manual, the following four manuals will assist you to
develop and integrate Mx4 cnC++ into your simple or complex machine.
Depending on your application and system integration expertise, you may find
none, one or more of these supplementary manuals necessary.

Mx4Pro: Mx4 Tuning Expert

This manual describes Mx4Pro - a testing and tuning software used with Mx4
cnC++. Mx4Pro includes features such as a signal generator oscilloscope and
live block diagram which make this software useful for testing and performance
optimization.

Mx4 and C Programmer's Guide

This manual is written for those who wish to know about programming Mx4 in
the C environment. Mx4 & C assumes a minimum background in C programming
and in simple words describes efficient programming in the x86 environment.

Mx4 and Windows, Programming Mx4 in C++

Thismanual containsinformation on the Mx4 Windows Programming Library
(DLL) which permits C and C++ Windows applications to directly interface with
the Mx4 controller. Using the library applications can issue RTCsto Mx4 and
obtain the values of process variables made available by the controller.

VECTORA4 User's Guide

This manual includes information on the add-on drive control option. VECTOR4
is DSPCG's multi-DSP based drive controller that provides complete drive signal

Read This First

processing for all industrial DC and AC machines. The capabilities of VECTOR4
include that normally offered by servo control amplifiers.

Mx4 Development System User's Guide

This manual describes simple instruction on how DSPCG's full Mx4 development
system works. The development system includes:

One Mx4 PC/IAT

One VECTOR4 Add-On Drive Control Card

Three Self-Protected Power Modules for three axes of AC motor control
One Brushless DC Motor (1 hp) with 1000 line incremental encoder
One AC Induction Mator (1 hp) with 1000 line incremental encoder
One Power Cabinet

One Switching DC Power Supply

Set of Cables

A Quick Overview of ThisManual

Vi

First, we would like to share with you the way this manual is organized, hoping
this knowledge will help you quickly find the information you need.

We feel the first step in using an involved computerized product like Mx4 cnC++
is to understand its definition and topology (the way it is connected to other
subsystems and functions) in a system. Chapter 1 is dedicated to this task. This
chapter contains simple block diagrams that will describe Mx4 cnC++'s
capabilities and functions. Please bear in mind that detailed information on Mx4
cnC++ is provided in the following chapters, and in Chapter 1 we only describe
this product qualitatively.

Once you have learned about the basic functions of Mx4 cnC++, you may want
to test Mx4 cnC++'s strength in your system. Chapter 2 provides you with
information on hardware installation. In this chapter you will find information on
the location of jumpers and DIP switches, wiring Mx4 cnC++ to your amplifier,
/O and encoder subsystems, Mx4 cnC++ memory space address settings,
interrupt request jumper/DIP switch settings, etc.

Read ThisFirst

Note: Please alwaysread the"README" file in the root directory of
the enclosed Mx4 Utilities diskette for the latest updates.

The accompanying 3.5" diskette contains a program called MX4ATEST.EXE. This
test program is very useful ininitial hardware installation and power-up. In short
you can use this program as a quick "sanity check” on your wiring and switch
settings.

Once you have installed your hardware and made sure that all communications,
switches and jumpers are made and set correctly, you may move onto Chapter 3.
Chapter 3 briefly describes the main features of the Mx4Pro development
software. Mx4Pro is an easy-to-use graphic program that allows for quick system
programming and tuning (useful for single and multi-axis applications). No
programming skills are required to use this program. When running Mx4Pro, al
functions of Mx4 cnC++ are menu selectable; this is done to ensure you will
focus on system tuning and optimization and won't be bogged down with
programming details. Mx4Pro is supported by its independent manual. You
should feel comfortable with all the functions of Mx4 cnC++ and tune the control
gainsto your satisfaction before you move onto the next chapter.

Beginning Chapter 4 and beyond, information on Mx4 cnC++ will become more
technical and "lower level". You must deal with Mx4 cnC++ at this level of detail
only when you are ready to write your own customized application program.
Chapter 5 is dedicated to the description of Mx4 cnC++'s low-level instruction
set. For each instruction we describe its function, code, arguments and a few
applications that can benefit from its strength. Please remember that this chapter
explains what each instruction does but not how it can be transmitted to Mx4
cnC++ by the host.

We dedicated Chapter 6 to explain Host-Mx4 cnC++ communication. To
understand the communication between the host computer and Mx4 cnC++,
users are required to know about Mx4 cnC++'s memory organization, the address
space each Mx4 cnC++ card occupies and software communication protocols. In
describing Mx4 cnC++'s memory organization, we have categorized the Mx4
cnC++ commands into two major groups of real time commands (the commands
that receive the DSP's immediate attention) and contouring commands (those
that are executed based on the order they are stored in a special location of the
dual port memory called the ring buffer). You will also learn how Mx4 cnC++

Mx4 cnC++ User'sGuidevl.1 Vii

Read This First

viii

reports back to the host (special dual port memory location dedicated to these
parameters) and what situations cause Mx4 cnC++ to interrupt the host.

In Chapter 7 we describe the sources of errors, how Mx4 cnC++ reports them to
the host, how the user application program must handle them, and finally,
possible ways they may be cured.

Chapter 8 briefly describes VECTOR4, an add-on multi-DSP based card for drive
applications. If you have only purchased a Mx4 cnC++ card, you can skip this
chapter.

Finally, Chapter 9 is devoted to Mx4 cnC++'s specifications. Detailed electrical
and mechanical specifications are listed. On the hardware side we have included
al bus specific information. Numerical values for Mx4 cnC++'s parameters and
variables have been listed in terms of their binary range. Parameters specifying
performance such as sampling period and the maximum encoder speed Mx4
cnC++ can handle have been listed under performance specifications.

A Quick Reference

Read ThisFirst

Mx4 cnC++ User'sGuidevl.1

System Description I

Hardwarelnstallation
Switch & Jumper Settings

Har dwar e Troubleshooting I—

v

Tuning Mx4 cnC++ I

Mx4 cnC++ Programming
M ethods

Mx4 cnC++ Host-Based
Instruction Set

Host Communication I—

Memory Organization I—

Error Handling I

VECTOR4 I

Specifications I

GoTo...

Chapter One

Chapter Two

Chapter Three

Chapter Four

Chapter Five

Chapter Six

Chapter Seven

Chapter Eight

Chapter Nine

Read This First

This page intentionally blank.

1 | ntroduction to M x4 cnC++

M x4 cnC++ System Description

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ is afully digital high-performance four-axis position controller. This
multi-DSP based servo controller uses up to four DSPs (including a drive control
option, VECTOR4) in a parallel processing configuration to close tighter, faster
and more robust position and velocity loops. It also utilizes DSPCG's ASIC
technology which provides exceptional hardware versatility and flexibility.

Mx4 cnC++ outputs its control signals (ranging = 10 volts) viafour 16-bit parallel
DACs to any AC/DC industrial servo amplifier. It also incorporates 8 on-board
inputs and 3 outputs for PLC applications. See Fig. 1-1.

Using VECTOR4, the optional add-on drive control card, converts the Mx4
cnC++ to a "complete signal processing unit". The complete unit is capable of
performing all control functionsincluding PWM signals for the power transistors
of an output stage.

11

Introduction to Mx4 cnC+ +

HOST

HOST

Fig. 1-1:

Mx4 cnC++

Conventional

Servo Amplifiers

—

®» o >» o

Position Encoders

_.>J

Four

Motors

Mx4 cnC++ with VECTOR4

<:> Mx4 cnC++

DSP Bus

=

VECTOR4

[

PWM
Signals

—

Switching
Power
Stage

Four

Motors

Position Encoders

Current

Top: Mx4 cnC++ with Conventional Servo Amplifiers,

Bottom Mx4 cnC++ with the VECTOR4 Drive Control Option

M x4 cnC++ Programming

1-2

Mx4 cnC++ incorporates RTC programming. In addition, Mx4 cnC++ supports
contouring commands for complex control applications.

The Real Time Commands, or RTCs, are issued by the host and executed by Mx4
cnC++ immediately after they are transferred. Contouring commands are issued
by the host in the form of transferring a number of widely spaced position and
velocity points to Mx4 cnC++. These commands are stacked up and executed by
Mx4 cnC++ sequentially.

Introduction to Mx4 cnC+ +

Mx4 cnC++ uses a Dua Port RAM (DPR) for communication with the host
processor or computer. The DPR is partitioned into a large ring buffer for
downloading host instructions to Mx4 cnC++ and a number of register
"windows" for bi-directional information transfer. All system states such as
position and velocity are reported in real-time to the DPR for the host to read. In
addition, Mx4 cnC++ supports a debug feature that allows the host to interrogate
internal Mx4 cnC++ parameters through the DPR.

Mx4 cnC++
Dual Port RAM

Status Registers
Parameter Updates

Signature Window

HOST Ring Buffer
(contouring)

Real Time Command
Interrupt Registers

Servo
Amps

4
A
Zo-H4»rovImmMmAZ —
4
\
~Oo® -4z 00

Fig. 1-2: Mx4 cnC++ Interna Functional Block

Mx4 cnC++ Computation Power & Servo Update Rate

Mx4 cnC++ User’'s Guide v2.0

The tremendous power of four DSPs yields 36 MIPS, million instructions per
second, (four axes with 9 MIPS per axis equals 36 MIPS). This speed makes the
Mx4 cnC++ the fastest controller in the world. These ultra-high speed DSPs
implement advanced optimum control algorithms at a 120ns update rate (all axes
included). Despite the control complexity incorporated in Mx4 cnC++, its sample
rate is the fastest in the world making a 1,000 Hz analog control loop completely
replaceable with the Mx4 cnC++. This leaves no practical analog servo out of the
picture.

1-3

Introduction to Mx4 cnC+ +

M x4 cnC++ Control Law

1-4

The Mx4 cnC++ incorporates a state feedback controller with dual feedback
loops. A single 40 MHz DSP is dedicated to this task because the control law is
important in control quality

Output
Loop Gain

[to DAC

Kalman
Filter

Sampling Period

L Pactual

Fig. 1-3: Mx4 cnC++ Position, Velocity Control Block Diagram
(excluding drive control)

This control includes position and velocity loops. The actual system speed is
estimated by the Kalman filter and fed back to regulate speed. The two states,
position and speed, are constantly commanded by an interpolating al gorithm and
maintained by the control law. The control law is closed at 120ms (all axes
included), providing robust operation for all industrial applications demanding
up to a 1,000 Hz position control bandwidth.

Why State Feedback?

The answer issimple: state feedback is easier to tune and provides a combination
of control robustness with high bandwidth. Within this structure, optimum
control algorithms such as LQG, dead beat, bang bang, etc. may be implemented.

Mx4 cnC++ User’'s Guide v2.0

Introduction to Mx4 cnC+ +

The Kalman filter provides optimum estimation of speed and acceleration when
environmental noiseis present. The Kalman filter's output, velocity, provides the
best feedback information at speeds with alow encoder pulse rate. The Kalman
filter yields the best speed regulation at very low speeds.

In addition to state feedback control, an integration channel with anti-windup
capability is provided to enable usersto implement atraditional PID algorithm.

Notch Filter

Mx4 cnC++ includes a [optional] notch filter with programmable notch frequency.
This feature eliminates the mechanical resonance caused by an imperfect
coupling between motor and load or other joint flexibility.

Drive Control Law

Mx4 cnC++ includes a drive control option, VECTOR4, that regulates current
loops. This is essential in robust and high bandwidth control of multi-phase
industrial drives. Two additional DSPs are dedicated to thistask.

Frequency
Command

Commutation Encoder
Velocity Velocity () Torque
Command y Control
Matrix PWM Signal E’
Transformations Generation INHIBIT
Field {)— »| Field
Command Control
lgs
lds

Matrix Phase Currents
Transformations

Ir
f-——
ADC
Phase Is
Generator [—

Observer
Algorithm

PWM Signals

Digital Encoder Signals

Filter

Fig. 1-4: Mx4 cnC++ Drive Control Block Diagram

1-5

Introduction to Mx4 cnC+ +

Coordination

1-6

Coordination of four axes requires breaking four dimensional motion vectors
down to the individual axis and interpolating the segment positions. Large
position segments such as circular and elliptic arcs (for four or more axes) are
broken down to smaller position and velocity pieces. These segments are
interpolated down to 200 ns intervals. This provides the tight coordination ideal
for CNC, robotics and other applications demanding high-speed precision
control.

Host Specifies
(Position & Velocity Points)

Mx4 cnC++ Interpolates

/N

-~ 1-100 msec >

Fig. 1-5: Mx4 cnC++ Interpolation

Introduction to Mx4 cnC+ +

Cubic Spline Contouring

Mx4 cnC++ User’'s Guide v2.0

This interpolation provides a path between two user-specified position points
which is smooth in velocity and continuous in acceleration. Cubic spline
interpolation enhances contouring quality especially when the position points
arewidely spaced intime.

Fig. 1-6 compares the linear and cubic splineinterpolations. The following figure
(Fig. 1-7), shows the significance of cubic spline interpolation over that of linear
when first (velocity) and second (accel eration) derivatives are considered.

actual path, linear and Mx4 cubic spline interpolations
1888 T T T T

988 L Fx4 cubic §pline
interpolation

888 . J
“__linear

interpolation
7a8 - —

6ae L actual pathﬂ

z@Aps—,
498 .

position in counts

388 - —

288 -

188 - —

L L L L
a Z 4 6 a8 18

time in ns

Fig. 1-6: Three User-Specified Pos./Vel. Points, Linear Interpolation and Mx4
Cubic Spline Interpolation

1-7

Introduction to Mx4 cnC+ +

linear vs. Mx4 cubic spline vel. & accel.

48 T T T T
3@ L o linear interpolation of velocity |
=
=] .
- i
- e Mx4 interpolation
= Z8 - ZB@ps—- © ./ of velocity B
o .
o
Q
5 -
18 ; b
o .
=
©
=]
£
° Mx4 inter-pnlatim‘l_/ — linear interpolation
e of acceleration of acceleration
-18 - J
_ZB 1 1 1 1
a 2 4 6 8 18

time in ns

Fig. 1-7: Mx4 Cubic Spline Interpolations vs. Common Linear Interpolation

5000 blocks of position/velocity per second are transferred to four control loops.

Introduction to Mx4 cnC+ +

5000/s

vy —
5000/s

j S—)
— > p

5000/s vz I

>

5000/s Vw I

[— o>

Filter

Fig. 1-8: Mx4 Cubic Spline Block Transfer
The combination of fast block transfer rate and cubic spline interpolation

improve contouring speed and resolution. Thisisillustrated by Fig. 1-9, scope
picture of x-axis position.

Mx4 cnC++ User’'s Guide v2.0 1-9

Introduction to Mx4 cnC+ +

X-position
A
f.f) -
F L"w
!

N

P time

| 16 ms |

Fig. 1-9: The Mx4 DAC output for x-axis position illustrating cubic spline
interpolation through 16 points

This picture shows the x-axis share of acircular move performedin 16 ms! The
significance of this graph is not that the Mx4 can finish acirclein 16 ms but that
it can perform sharp edge contours at high feed rates. For example, one can claim
that the x-y scope plot of Fig. 1-10 isanatura benefit of Fig. 1-9.

1-10

Mx4 cnC++ User’'s Guide v2.0

Introduction to Mx4 cnC+ +

Fig. 1-10: The Mx4 x-y position plot using cubic spline contouring of 32
points.

i) Total contouring time= 160 ms,

ii) “+" marksindicate the 32 supplied points,
iii) Continuous lineillustrates the Mx4' sinterpolated path.

1-11

Introduction to Mx4 cnC+ +

Synchronization

1-12

In addition, Mx4 cnC++ synchronizes several axes of control using high-speed
(100 ns) position and event captures. In applications such as printing, packaging,
indexing, paper handling, etc., the initial motion in several axes depends on the
position of a master axis or atiming pulse provided by an external event. Proper
timing for the execution of motion is crucia for synchronized applications. The
Mx4 cnC++'s ASICs contain 100 ns position and event captures designed
especially for these applications.

2| nstalling Your Mx4 cnC++
Hardware

Mx4 cnC++ User'sGuidevl.1

A typical PC/AT Mx4 cnC++ system (Fig. 2-1) consists of:

aPC/AT ISA host computer

aMx4 cnC++ card occupying a slot on the host computer

oneto four motors with incremental position encoder(s)

one to four servo amplifiers

cabling from Mx4 cnC++ J6 connector to servo amplifier(s)

encoder feedback cabling to Mx4 cnC++ J6 connector

optional cabling of external inputsto Mx4 cnC++ (J3 or J6) connector
optional cabling of user inputs/outputsto Mx4 cnC++ J3 connector
optional synchronization cable between multiple Mx4 cnC++ cards

©WoOoNO~WNE

When installing a Mx4 cnC++ card, it is important to follow a procedure so that
the card operates correctly in agiven system. The installation guidelines detailed
here incorporate three important topics: cabling to the Mx4 cnC++ card, Mx4
cnC++ jumper settings and bus-related Mx4 cnC++ settings.

Note: If you are impatient to test the communication between your
computer and the Mx4 cnC++ card before completing the

instructions of this chapter, you may do so by running Mx4
Pro software (see Chapter 3, Running Mx4Pro section). The

monitor will display the MAIN MENU screen only if the Mx4
cnC++ card and your computer are communicating.

When you are assured of this communication, come back to
finish this chapter!!

2-1

Installing Your Mx4 cnC++ Hardware

Outputs

Inputs

AAY

External Interrupts

Logic Level Signals

J

Synchronization

Servo Command

I T

¥

Host Computer

Encoder Feedback

Fig.2-1: PC/AT Mx4 cnC++ System Cable Diagram

Fig. 2-2 is an illustration of a PC/AT Mx4 cnC++ card that details connector,

jumper and DIP switch positions and orientations. This figure will be used as a
reference in the following pages.

! ! t“l VR1-4

ITl J5 DD DD
=] J6]

Jul
SW1
Ju3

Ju2 ||

[—
I [[

Fig. 22 PC/AT Mx4 cnC++ Card Component Side

2-2

Installing Your Mx4 cnC++ Hardware

PC/AT Mx4 cnC++ Cabling

Mx4 cnC++ User'sGuidevl.1

The PC/AT Mx4 cnC++ card contains three connectors as illustrated in Fig. 2-2.
These connectors are used for interfacing the Mx4 cnC++ card to the
motors/system, optional user-defined inputs and outputs, and for the
synchronization of multiple PC/AT Mx4 cnC++ cards (Fig. 2-3).

External Interrupts
Inputs Synchronization
Outputs

|
| LI 1

]
J3

o Servo Command Signals
Logic Level Signals

— <

— Encoder Feedback

| I External Interrupts

Fig. 2-3: PC/AT Connector Signals

Before using a Mx4 cnC++ card in a system application, a cable 'network(s)' must
be built. The following sections provide a reference for designing and building
PC/AT Mx4 cnC++ cables.

2-3

Installing Your Mx4 cnC++ Hardware

PC/AT Mx4 cnC++ J6 Connector
Motor/System I nterfacing

The PC/AT Mx4 cnC++ J6 connector is a (50-pin dual row header). This
connector includes the motor and system interfacing signals for four axes. The
signals are divided into four categories: servo command signals, encoder
feedback signals, general purpose external interrupt inputs and logic level
signals.

Table 2-1 specifies the pinout for the PC/AT Mx4 cnC++ 50-pin header. The table
includes signal level (type) and I/O functionality (with respect to the Mx4 cnC++
card).

J6 Connector Pinout

PIN SIGNAL LEVEL 1/0 DESCRIPTION
1 +12 volts - O -
2 +5 volts - O -
3 +12 volts - o |-
4 -12 volts - o |-
5 | Digitd GND - o |-
6 | Anaog GND - o |-
7 | Shield GND - o |-
8 ESTOP/ TTL | Mx4 cnC++ emergency stop input
9 /PRO TTL | general purpose (probe) external interrupt
10 /PR1 TTL | general purpose (probe) external interrupt
11 DAC(1) |(-10to+10v| O | DAC/motor output for axis 1
12 | Analog GND - o |-
13 | Digital GND - o |-
14 A+(1) TTL | differential encoder signal A+ for axis 1
15 A-() TTL | differential encoder signal A- for axis 1
16 B+(1) TTL | differential encoder signal B+ for axis 1
17 B-(1) TTL | differential encoder signal B- for axis 1
18 +5 volts - O -
19 1P+(1) TTL | differential encoder index pulse signal |P+ for axig
1
20 IP-(1) TTL differential encoder index pulse signal IP- for axis
1
21 DAC(2) [-10to+10v| O DAC/motor output for axis 2

Installing Your Mx4 cnC++ Hardware

Table2-1: PC/AT Mx4 cnC++ J6 Connector Pinout (continued on next page)

Mx4 cnC++ User'sGuidevl.1 2-5

Installing Your Mx4 cnC++ Hardware

PIN SIGNAL LEVEL 1/0 DESCRIPTION

22 | Analog GND - o |-

23 | Digital GND - o |-

24 A+(2) TTL | differential encoder signal A+ for axis 2

25 A-(2) TTL | differential encoder signal A- for axis 2

26 B+(2) TTL | differential encoder signal B+ for axis 2

27 B-(2) TTL | differential encoder signal B- for axis 2

28 +5 volts - O -

29 IP+(2) TTL | differential encoder index pulse signal |P+ for axig
2

30 IP-(2) TTL differential encoder index pulse signal IP- for axis
2

31 DAC(3) [-10to+10v| O DAC/motor output for axis 3

32 [Analog GND - o |-

33 | Digital GND - o |-

34 A+(3) TTL I differential encoder signal A+ for axis 3

35 A-(3) TTL | differential encoder signal A- for axis 3

36 B+(3) TTL | differential encoder signal B+ for axis 3

37 B-(3) TTL | differential encoder signal B- for axis 3

38 +5 volts - o |-

39 1P+(3) TTL | differential encoder index pulse signal |P+ for axig
3

40 IP-(3) TTL differential encoder index pulse signal IP- for axis
3

41 DAC(4) |[-10to+10v| O DAC/motor output for axis 4

42 | Analog GND - o |-

43 | Digitd GND - o |-

44 A+(4) TTL | differential encoder signal A+ for axis 4

45 A-(4) TTL | differential encoder signal A- for axis 4

46 B+(4) TTL | differential encoder signal B+ for axis 4

a7 B-(4) TTL | differential encoder signal B- for axis 4

48 +5 volts - o |-

49 1P+(4) TTL | differential encoder index pulse signal |P+ for axig
4

50 IP-(4) TTL differential encoder index pulse signal IP- for axis
4

Table2-1cont.: PC/AT Mx4 cnC++ J6 Connector Pinout

2-6

Mx4 cnC++ User'sGuidevl.1

Servo Command Signals

Installing Your Mx4 cnC++ Hardware

The servo command signals are those signals that 'drive’ the axis servo amplifiers
or output stage. The PC/AT Mx4 cnC++ card utilizes 16-bit DAC outputs with
+10v to -10v voltage swings to drive any voltage level sensitive output stage.

The PC/AT Mx4 cnC++ servo command signalsarelisted in Table 2-2:

Partial J6 Connector Pinout

SIGNAL PIN LEVEL 170 DESCRIPTION
DAC(1) 11 [-10to+10v| O DAC/motor output for axis 1
DAC(2) 21 |-10to +10v| O DAC/motor output for axis 2
DAC(3) 31 |-10to +10v| O DAC/motor output for axis 3
DAC(4) 41 [-10to+10v| O DAC/motor output for axis 4

Analog GND | 12 - ¢}

Analog GND | 22 - (0]

Analog GND | 32 - (0]

Analog GND | 42 - O

Table2-2: PC/AT Mx4 cnC++ J6 Servo Command Signals

The DAC(x) signals must be routed from the J6 50-pin header connector to the
respective output stage servo drives. The Mx4 cnC++ Analog GND signals are
included as a voltage reference for the DAC(x) signals. Analog GND should be

utilized accordingly in the cabling between Mx4 cnC++ and the output stages.

DAC(X) output offset voltage may be adjusted with the VRx multi-turn
potentiometer (VR1 - DAC(1), VR2 - DAC(2), etc.) The Mx4 cnC++ is shipped
from the factory with minimized offset voltage.

2-7

Installing Your Mx4 cnC++ Hardware

Encoder Feedback

The Mx4 cnC++ card requires the use of incremental position encoders for motor-
Mx4 cnC++ feedback. No velocity feedback (such as atachometer) is required as
Mx4 cnC++ incorporates a Kalman velocity observer algorithm. The PC/AT Mx4
cnC++ encoder feedback signals arelisted in Table 2-3.

Partial J6 Connector Pinout

SIGNAL PIN LEVEL 170 DESCRIPTION
A+(1) 14 TTL | differential encoder signal A+ for axis 1
A-(1) 15 TTL | differential encoder signal A- for axis 1

B+(1) 16 TTL | differential encoder signal B+ for axis 1

I
I

B-(1) 17 TTL differential encoder signal B- for axis 1

IP+(1) 19 TTL differential encoder index pulse signal |P+ for axis
1

IP-(1) 20 TTL differential encoder index pulse signal IP- for axis
1

A+(2) 24 TTL | differential encoder signal A+ for axis 2
A-(2) 25 TTL | differential encoder signal A- for axis 2
B+(2) 26 TTL | differential encoder signal B+ for axis 2
|
|

B-(2) 27 TTL
IP+(2) | 29 TTL

differential encoder signal B- for axis 2

differential encoder index pulse signal IP+ for axis
2
IP-(2) 30 TTL | differential encoder index pulse signal IP- for axis
2

A+(3) 34 TTL
A-(3) 35 TTL differential encoder signal A- for axis 3

| differential encoder signal A+ for axis 3

|
B+(3) 36 TTL I differential encoder signal B+ for axis 3

I

I

B-(3) 37 TTL differential encoder signal B- for axis 3

IP+(3) 39 TTL differential encoder index pulse signal |P+ for axis
3

IP-(3) 40 TTL differential encoder index pulse signal IP+ for axis
3

A+(4) 44 TTL | differential encoder signal A+ for axis 4
A-(4) 45 TTL | differential encoder signal A- for axis 4
B+(4) 46 TTL | differential encoder signal B+ for axis 4
|
|

B-(4) 47 TTL differential encoder signal B- for axis 4

IP+(4) 49 TTL differential encoder index pulse signal IP+ for axis
4

2-8

Installing Your Mx4 cnC++ Hardware

IP-(4) 50 TTL I differential encoder index pulse signal IP+ for axis
4
Digital GND | 13 - O |-
Digital GND | 23 - O |-
Digital GND | 33 - O |-
Digital GND | 43 - o |-

Table2-3: PC/AT Mx4 cnC++ J6 Encoder Feedback Signals

Mx4 cnC++ User'sGuidevl.1

29

Installing Your Mx4 cnC++ Hardware

2-10

The PC/AT Mx4 cnC++ allows the use of either differential or single-ended
encoder feedback. The choice is made viathe JU2 jumper on the Mx4 cnC++ card
(see PC/AT Mx4 cnC++ Jumper Settings). If a combination of differential and
single-ended encoder feedback is desired, the jumper must be placed in
"differentia” mode and the following procedure must be followed. If single-
ended encoders are to be used in "differential” mode, it is necessary to route the
single-ended line to the corresponding "+" Mx4 cnC++ differential input. The "-"
differential input to the corresponding signal must be tied to +2.5v. For example,
to connect asingle-ended "A" encoder lineto axis 3 of Mx4 cnC++:

A+(3)
A-(3)

single-ended "A" encoder line
+2.5v

The Mx4 cnC++ encoder feedback inputs are TTL-level inputs. The Mx4 cnC++
Digital GND signals are included as voltage references for the differential inputs.
The Digital GND signal(s) available on the J6 connector must be connected to
the appropriate incremental encoder voltage reference points.

When interfacing incremental encoders to Mx4 cnC++, it is important that the
following two conventions are followed:

1. Mx4 cnC++ detects an active-HIGH index pule. If the encoder(s) being
interfaced to Mx4 cnC++ include index pulse signals, it is important to
note that the correct polarity isin effect. To reverse the polarity of an
index pulse signal, simply 'swap' the IP+ and IP- signals to the Mx4
cnC++ card.

2. The incremental encoder signals (A+, A-, B+, B-) should follow the
convention of Fig. 2-4. That is, when the motor shaft is manually turned
in the clockwise direction, a negative velocity should result.

Installing Your Mx4 cnC++ Hardware

VOLTAGE

TIME

Fig.2-4: Mx4 cnC++ Incremental Encoder Signals Polarity ... Clockwise Shaft
Rotation Yields Negative Vel ocity

If the use of an oscilloscope is not convenient, the encoder signal polarity may
be verified later. In afollowing section, Verifying Your Mx4 cnC++ Hardware
Set-Up, the encoder signal polarity is checked via software. The check is simple
and does not require the use of an oscilloscope. If the incremental encoder signal
polarity is incorrect, it may be reversed simply by 'swapping' the A and B
encoder signals.

Mx4 cnC++ User'sGuidevl.1 2-11

Installing Your Mx4 cnC++ Hardware

2-12

General Purpose External Interrupt Inputs

The PC/AT Mx4 cnC++ external interrupt inputs include an 'Emergency Stop' line
and two general purpose external interrupts. The J6 connector external interrupt
inputs are repeated on the J3 connector. If the user is utilizing these signals, the
signals may be accessed from either the J6 or J3 connector, but not from both.
The external interrupt inputs are listed in Table 2-4:

Partial J6 Connector Pinout

SIGNAL PIN | LEVEL 1/0 DESCRIPTION
ESTOP/ 8 TTL | Mx4 cnC++ emergency stop
/PRO 9 TTL | genera purpose (probe) external interrupt
/PR1 10 TTL | general purpose (probe) external interrupt
Digital GND | 5 - o |-

Table2-4: PC/AT Mx4 cnC++ J6 External Inputs

These signals are optional for Mx4 cnC++ operation. The definitions of these
signals will be presented in later sections of this manual.

The ESTOP/ and /PRx signals are active-LOW signals. That is, Mx4 cnC++
detects these active conditions when the voltage level on those lines is LOW.
The Mx4 cnC++ Digital GND signal is included as a voltage reference for the
external input signals.

Logic Level Voltages /7 GND Signals

Installing Your Mx4 cnC++ Hardware

The PC/AT Mx4 cnC++ card includes in its connector pin-out the following logic
level / GND signals (Table 2-5) [in addition to the previously mentioned logic

signalsincluded with different signal groups]:

Partial J6 Connector Pinout

SIGNAL

PIN

LEVEL

S
o

DESCRIPTION

Mx4 cnC++ User'sGuidevl.1

+12 volts

+12 volts

+5 volts

-12 volts

Analog GND

Digita GND

Shield Gnd

~N|jlofo|d|IN|W|EF

o|o|o|o|o|0o|0o

Table2-5: PC/AT Mx4 cnC++ J6 Logic Level / GND Signals

2-13

Installing Your Mx4 cnC++ Hardware

PC/AT Mx4 cnC++ J3 Connector ... Inputs/Outputs

The PC/AT Mx4 cnC++ J3 connector is a (16-pin dua row header). This
connector includes the Mx4 cnC++ input and output signals as well as a repeat

of the J6 general purpose external interrupt inputs.

Table 2-6 specifies the pinout for the PC/AT Mx4 cnC++ 16-pin header. The table
includes signal level (type) and 1/0O functionality (with respect to the Mx4 cnC++

card).

J3 Connector Pinout

PIN SIGNAL LEVEL 1/0 DESCRIPTION
1 OouT3 TTL 0 | Gen. purpose output

2 -O.T. TTL I Axis4

3 ouT2 TTL 0 Gen. purpose output

4 +0.T. TTL I Axis4

5 OuUT1 TTL 0 Gen. purpose output

6 -O.T. TTL | Axis 3

7 IN5 TTL | general purpose input

8 +0.T. TTL I Axis 3

9 IN4 TTL | general purpose input

10 -O.T. TTL I AXxis 2

11 IN3 TTL I Dedicated Input (ESTOP/)
12 +0.T. TTL I Axis 2

13 IN2 TTL | Dedicated input (/PR1)

14 -O.T. TTL | Axis 1

15 IN1 TTL I Dedicated input (/PRO)
16 +0.T. TTL I Axis 1

Table2-6: PC/AT Mx4 cnC++ J3 Connector Pinout (continued on next page)

2-14

Inputs

Installing Your Mx4 cnC++ Hardware

Mx4 cnC++ includes 10 user-defined TTL logic inputs. The input signals are

listedin Table 2-7.

Partial J3 Connector Pinout

Mx4 cnC++ User'sGuidevl.1

PIN SIGNAL LEVEL 1/0 DESCRIPTION
2 -O.T. TTL | Axis4

4 +0O.T. TTL | Axis4

6 -O.T. TTL I Axis 3

7 IN5 TTL | general purpose input
8 +0.T. TTL I AXis3

9 IN4 TTL | general purpose input
10 -O.T. TTL I Axis 2

12 +0.T. TTL | Axis 2

14 -O.T. TTL | Axis 1

16 +0O.T. TTL | Axis 1

Table2-7: PC/AT Mx4 cnC++ J3 Input Signals

The Mx4 cnC++ user-defined input signalsare TTL logic level inputs. The inputs
are equipped with pull-up resistors which are implemented as current sources

(see Fig. 2-5).

2-15

Installing Your Mx4 cnC++ Hardware

2-16

\ 27.9K ohm
(0.17 mA @ON)

263K ohm
(0.02 mA @ON)

actual -V profile

worst case V s
0.32V at 4 mA

> v

Fig. 2-5: Mx4 cnC++ Input (Pull-Up Resistor) Current Source

By default, the inputs are defined as active-LOW. That is, Ov applied to an input
resultsin an active, or ON, input; +5v applied to an input resultsin an inactive, or
OFF input. The logic state of the inputs may be individually selected via the
INPSTATE command.

Mx4 cnC++ User'sGuidevl.1

Installing Your Mx4 cnC++ Hardware

Fig. 2-6 illustrates two possible configurations for interfacing external input
circuitry to Mx4 cnC++ inputs: optically-isolated input and same-ground input.

External
Circuits

a)

Mx4 cnC++

Mx4 cnC++ Input Pull-Up
Resistor / Current Source

Mx4 cnC++ Input

Opto Isolator

User Switch /l

b)

Mx4 cnC++ Digital GND

User Input |

TTL Logic

Fig. 2-6: Interfacing Input Signalsto Mx4 cnC++

a) Optical Isolated Input
b) Same-Ground Input

Mx4 cnC++ Input

2-17

Installing Your Mx4 cnC++ Hardware

2-18

Outputs

The PC/AT Mx4 cnC++ controller includes 3 programmable outputs. The output
signalsarelisted in Table 2-8.

Partial J3 Connector Pinout

PIN SIGNAL LEVEL 1/0 DESCRIPTION
1 ouT3 TTL (e} general purpose output
ouT2 TTL 0 general purpose output
5 OouT1 TTL O | general purpose output

Table2-8: PC/AT Mx4 cnC++ J3 Output Signals

The Mx4 cnC++ output signals are TTL logic level outputs with afan out of one
(that is, a Mx4 cnC++ output should not be used to drive more than one TTL
logic gate). As an example of interfacing to the Mx4 cnC++ output signals, Fig. 2-
7 illustrates arelay output circuit.

External

Mx4 cnC++ Circuits

— o
q User
] q Relay Contacts
Mx4 cnC++ Output — T

7407

Relay

Fig.2-7: Interfacing aRelay to aMx4 cnC++ Output

The Mx4 cnC++ outputs are active-LOW. That is, an ON output is an output at
Ov, an OFF output is an output at +5v. The ON/OFF state of the outputs is
determined by the OUTREL command.

Mx4 cnC++ User'sGuidevl.1

Installing Your Mx4 cnC++ Hardware

General Purpose External Interrupt Inputs

The J3 connector includes three external interrupt inputs which are repeated on
the J6 connector. If the user is utilizing these signals, the signals may be
accessed from either the J6 or J3 connector, but not from both. The PC/AT Mx4
cnC++ external interrupt inputs include an 'Emergency Stop' line and two general
purpose external interrupts. The external interrupt inputs are listed in Table 2-9:

Partial J3 Connector Pinout

SIGNAL PIN | LEVEL 1/0 DESCRIPTION

ESTOP/ 11 TTL | Mx4 cnC++ emergency stop
/PRO 15 TTL | genera purpose (probe) external interrupt
/PR1 13 TTL | general purpose (probe) external interrupt

Table2-9: PC/AT Mx4 cnC++ J3 External Inputs

These signals are optional for Mx4 cnC++ operation. The definitions of these
signals will be presented in later sections of this manual.

The ESTOP/ and /PRx signals are active-LOW signals. That is, Mx4 cnC++
detects these active conditions when the voltage level on those lines is LOW.
The Mx4 cnC++ Digital GND signal is included as a voltage reference for the
external input signals.

2-19

Installing Your Mx4 cnC++ Hardware

PC/AT Mx4 cnC++ J5 Connector ... Synchronization

2-20

Multiple PC/AT Mx4 cnC++ cards may be time-synchronized to the same DSP
cycle with the J5 synchronization connector. This Mx4 cnC++ feature allows
multi-axis systems which require greater than four axes to be synchronized. The
Mx4 cnC++ synchronization signalsarelisted in Table 2-11.

J5 Connector Pinout

PIN SIGNAL LEVEL 1/0 DESCRIPTION
1 nc - - no connection
2 SLAVE TTL | slave Mx4 cnC++ synchronization input
3 SLAVE TTL | slave Mx4 cnC++ synchronization input
4 MASTER TTL O master Mx4 cnC++ synchronization output

Table 2-11: PC/AT Mx4 cnC++ J5 Connector Pinout

Synchronizing multiple Mx4 cnC++ cards only requires cabling between the
MASTER J5 signa from the "master" Mx4 cnC++ to a SLAVE J5 signal (either
pin 2 or pin 3) on the"slave" card(s).

Mx4 cnC++ Synchronization
Cabling Between
Unlimited Number Of Cards

Fig.2-8: Time Synchronizing Multiple PC/AT Mx4 cnC++ Cards

Mx4 cnC++ User'sGuidevl.1

Installing Your Mx4 cnC++ Hardware

The Mx4 cnC++ J5 connector includes dual SLAVE signals in order to simplify
"daisy chaining" between multiple Mx4 cnC++ controllers.

Ll
1 2

|
3 4
5

MASTER
Mx4 cnC++

SLAVE

Mx4 cnC++

SLAVE

Mx4 cnC++

Fig. 2-9: Mx4 cnC++ J5 Connector Daisy Chaining Cabling

2-21

Installing Your Mx4 cnC++ Hardware

PC/AT Mx4 cnC++ Jumper Settings

The PC/AT Mx4 cnC++ card contains three jumpers. The jumpers should be set
according to the following table. The jumper orientation on the PC/AT Mx4
cnC++ card was shown in Fig. 2-2. The three jumpers are listed below in Table 2-

12.
JUMPER # POS. JUMPER ORIENTATION / DESCRIPTION
Jul 3 jumper must be placed in 1-2 position
Ju2 3 1-2: Differential encoder operation
2-3: Single-ended encoder operation
Jus 22 interrupt selection jumper, see PC/AT Mx4 cnC++ Bus
Specifications / Settings

Table2-12: PC/AT Mx4 cnC++ Jumpers

PC/AT Mx4 cnC++ Bus Specifications/ Settings

In order for the Mx4 cnC++ card to operate correctly on the host bus (and thusin
the system), the host must be able to address the Mx4 cnC++ card and receive
interrupts from the Mx4 cnC++ card. These are host computer/bus issues that
require proper settings on the Mx4 cnC++ card as well as correct software
routines on the host computer end. The following is a description of how the
PC/AT Mx4 cnC++ card operates on the PC/AT ISA bus as well as outlines for
setting the PC/AT Mx4 cnC++ businterface parameters.

Note: The software included with the Mx4 cnC++ card (Mx4 Test)
requires specific bus-related settings on the Mx4 cnC++ card
in order to run. That is, these programs require Mx4 cnC++ to
be located (address-wise) in a unique location in the host-bus
address space. The bus-related Mx4 cnC++ settings are
included in this chapter, Verifying Your Mx4 cnC++
Hardware Set-Up.

2-22

Mx4 cnC++ User'sGuidevl.1

Installing Your Mx4 cnC++ Hardware

The PC/AT Mx4 cnC++ acts as a memory device on the ISA bus. It decodes 20
address bits and communicates via 8-bit data transfers. The PC/AT Mx4 cnC++
contains ajumper to select any one of 11 businterrupt lines.

Memory Address

The PC/AT ISA bus Mx4 cnC++ decodes 20 address bits. The card can be
positioned on any 2K boundary within the ISA base 1M address space. The
PC/AT Mx4 cnC++ will not respond to any addresses in the upper 15M of
address space. The PC/AT Mx4 cnC++ 10-position DIP switch SW1 is used to
select the start of the boundary (Table 2-13).

ADDRESS MATCHED
POSITION SW OFF SW ON
Swi-1 A19=1 A19=0
SwW1-2 A18=1 A18=0
SW1-3 Al7=1 A17=0
SW1-4 Al6=1 A16=0
SW1-5 Al15=1 A15=0
SW1-6 Al4=1 A14=0
SW1-7 Al13=1 A13=0
SW1-8 Al12=1 A12=0
SW1-9 All=1 Al11=0

SW1-10 nc nc

Table2-13: PC/AT Mx4 cnC++ 2K Boundary Select

Example: A PC/AT Mx4 cnC++ card isto beinstalled into the host bus

address space at the start of the Oxd, 64K segment.

The SW1 DIP switch is set as follows:

The SW1 DIP switch is set as follows:

anonnnnAn

2-23

Installing Your Mx4 cnC++ Hardware

2-24

Memory Space Functionality

The entire 2K memory space required by the PC/AT Mx4 cnC++ card is for

accessing the Mx4 cnC++ 2K DPR.

Interrupt Setting

The PC/AT Mx4 cnC++ card supports 11 PC/AT ISA bus interrupt lines which
are jumper selectable on the Mx4 cnC++ card (only one jumper is permitted). Mx4
cnC++ will use the selected interrupt line to signal interrupts to the host. The
PC/AT Mx4 cnC++ jumper JU3 is partitioned as follows in Table 2-14 (left to

right, 1-11).

JUMPER INTERRUPT
POSITION SELECTED
Jus-1 IRQ15
Jus-2 IRQ14
Jus-3 IRQ12
Jus-4 IRQ11
JU3-5 IRQ10
JU3-6 IRQ9
Jus-7 IRQ7
Jus-8 IRQ6
Jus-9 IRQ5
JU3-10 IRQ4
JU3-11 IRQ3

Table2-14: PC/AT Mx4 cnC++ Host Bus Interrupt Select

Installing Your Mx4 cnC++ Hardware

Verifying the Mx4 cnC++ Hardwar e Set-Up

I mportant: The included Mx4Test software is written for PC
based systems running the DOS operating system.
The software requires a minimum of a 80286
processor and aVGA monitor.

The hardware installation of a PC/AT Mx4 cnC++ into a system may be verified
with the use of the Mx4Test software that is located on the Mx4 Utilities diskette
in the MX4 TEST sub directory. Mx4Test is an executable program that allows
the user to progress through a series of tests that help determine whether or not
Mx4 cnC++ isinstalled correctly.

Before using Mx4Test, it is important that the PC/AT Mx4 cnC++ bus platform-
specific DIP switch SW1 is set according to the following table (Table 2-15).
[Mx4Test requires the PC/AT Mx4 cnC++ to be located at the start of segment
0xd of thefirst 1M of address space.]

DIP SWITCH SWITCH
POSITION STATUS
SW1-1 OFF
SW1-2 OFF
SW1-3 ON
SW1-4 OFF
SW1-5 ON
SW1-6 ON
SW1-7 ON
SW1-8 ON
SW1-9 ON
SW1-10 not used

Table2-15: PC/AT Mx4 cnC++ SW1 DIP Switch Setting for Mx4Test

Mx4 cnC++ User'sGuidevl.1 2-25

Installing Your Mx4 cnC++ Hardware

Running the Mx4Test Software

I mportant: Before powering-up Mx4 cnC++ and continuing on
with Mx4Test, the user should have followed the Mx4
cnC++ installation guidelines presented in the
previous sections and set the Mx4 cnC++ switches as
detailed above.

The Mx4Test program incorporates a variety of tests that indicate the
correctness of the Mx4 cnC++ installation. Some of the tests are passive while
others require action on the user's part (for example, turning a motor shaft or
manually generating an external interrupt).

The Mx4Test tests are categorized asfollows:
Mx4 cnC++ Addressing Tests Mx4 cnC++ - host computer
communication / interface.

Incremental Position Encoder feedback to Mx4 cnC++ and feedback
polarity checked. Encoder index pulse (marker)

may be tested as well.

Servo Command Mx4 cnC++ digital-to-analog converter outputs are

Signals tested.

External Interrupt Optional Mx4 cnC++ externa interrupt inputs
such as emergency stop and external interrupts
/PRO and /PR1 may be checked.

MXATEST.EXE is included on the enclosed diskette in the MX4TEST directory.
The program may be executed from the diskette or transferred onto a hard drive
and run from there.

2-26

Mx4 cnC++ User'sGuidevl.1

Installing Your Mx4 cnC++ Hardware

Once the Mx4 cnC++ card has been placed into a host-bus slot and the
connector(s) is in place, the host computer (bus) may be powered-up. To run
Mx4Test from the floppy, simply type Mx4Test a the a\MX4TEST\ DOS
prompt.

The Mx4Test Main Menu selections reflect the four categories of tests (as
previously detailed). The test procedures are simple and are explained in the
Mx4Test program.

If an error in the installation of the Mx4 cnC++ card becomes evident from Mx4
Test, it isadvised to consult the respective section in the Installing Mx4 cnC++
Into Your System chapter. Some of the more common problems and related
corrections areincluded in Table 2-16.

2-27

(eBed 1%eu UO PaNUNUOY) UOITR|RISU| ++DUD XA Bullooysa|gnoll 9T-Z9del

‘pAed ++JUd XA 8Ul
01speubis -d| pue +d| puiddems,, Aq pasienalaq few Allrelod “(esind xepul uonisod 1jeys Jo
HOH-8A1198 U0 S13818p ++JUD ¥X|Al) 1984100uU1 g Aew Ayirejod asind xepu| ‘T | ssa|prebal ‘annde sfempe asind xapu| -

“J1e1deyo snoinaud Ul

Pa|reIep Se ++JUd PX |\ 01 Suoissuuod reubis asind xspul Jepoous Jadoud AjIBA 2 esind

++0UD Xapul Japoous

*(eous e o1 BRI IOA) AN JOPOJUS 01 P1JBUL0I S| NS eMBIP ++Dud XN Aq pe1osiep asind xspul oN - | uonisod 428yd -

XA Teu pue paJemod S| ++JUd LX A Teul pue pasemod s| Jopooud Teul AJLA T

speubs
Japooud [eluBWwRIoUL g pue v ayy buiddems, Aq pasienal aq Aew Alike|od T pasianaisi Airejod uonisod sy -
*1g1deyd 4 d
knoinaid Ul pa|eIep Se ++JUd XA 01 SU019aUU0D eubis Jepoous Jadoud AJIBA 2 1lejod pue
pauwini si 1jeys >{Jeqpss} Jopoous
a1 e abueyd Jou Ssop anfeA UoISOd - | uonisod AJUBA -

*(@ousle .l afie1j0A) QND Jepodus 01
pa13BUU0D SI NS HBIP ++DUd HX | eyl pue pasemod S| Jepodus eyl AJLB A T

SJopooul uonisod
[elUSWIBIOU | 189 |

181 ++0Ud
PXIN Buluuns usym dniss arempreH ++Jud pXIAl INOA BulA}LeA ul paijioads Bussaippy
sBumss ay) 03 Bupiodde 18s 8q ISNW SBYINMS d | 214199dS-SNq ++JUD PXIN "T | IS9L++DUd vXIN A parealpulain|ied - [++Jud yXIA 38yd

SNOILSTOONS NOILDOV IAILDOTHHOD N3T780dd 3149ISSOd W31l

UOIIR|eISU | ++0Ud XA BUNOOUSS|gNOI L :"JU0d 9T-Z 3R L

*(adnussul
Xdd/ MO T-8A119e Ue S19919p ++JUd HX|N) 198.1400ul 8q Aew Airejod xHdd/ T annde shkempe dnuLiul | X3« -

*J010BUUO0D ++DUD XN 01 UOIIBUU0D XHd/ ALBA "2 (T P

++DUd 04d/) sidnusl

"ano e1bip
¥XIN Ag pa1oe1ep jou 1dnuLUl Xyd/ - | [euleIxe %98YD -

++DUD XA 01 pa198uU0d S| (QND) 8ouaJa ol 8fe1|0A 80IN0S XHd/ eyl AL A T

'1d01S3
MO T-9A1198 Ue S19918P ++DUd PX|A) 198.1400ul 8q Aew Alirejod /HO1ST ‘T aAnde sfempe si /dO1ST -

*10133UU0ID ++DUI X A 01 UO1IIBUUOD /JO1ST ALIBA -
0 [doLs3 A ¢ /4O 1S3 1ndul dois

20U I NS [ENBIP ++DUD HXA 0} POIJBULID 8¢ 1SNW 8Nn0s /do1sTT | THOWR VXN Aq pa19919p /dOLST ON - [fousbiowd 39y -

sindu|
feusoIxg %%®yo

‘abeis 1ndino Jo Jei1}ijdure oALSS 8y Wo.) Seubss

09UU0JS IP 8q pinoys ndino ud XN 3yl ‘painseaw Buleq ua : OV pueliod
3l Ip 8 p[noys Nano DA ++2Jud XA 8yl pa Bg UBYM ¢ 1091109 10U S9B10A D] PRINSES A - ONBS 183

‘90UBJaJo. abe1joA 8yl Se pasn S| AND Bofeuy ++Jud yXIN eyl AJIBA T

SNOILSTOONS NOILDOV IAILDOTHHOD N3T780dd 3149ISSOd W31l

Installing Your Mx4 cnC++ Hardware

This page intentionally blank.

2-30

3 M x4Pr o Softwar e

Mx4 cnC++ User'sGuidevl.1

running the DOS operating system. The software
requires a minimum of a 80286 processor and a VGA
monitor.

@ Important: The Mx4Pro software is written for PC-based systems

This chapter briefly overviews the features of Mx4Pro testing and tuning
software. For detailed information on these features, please refer to the Mx4Pro:
Tuning Expert manual.

Mx4 aone controls all servo amplifiers. VECTOR4 is an all-digital AC servo
controller add-on card that enables M x4 to control any combination of brushless
DC, AC induction and brush-type DC motors. Fig. 3-1 illustrates the two Mx4
configurations:

a) Mx4 with traditional servo amplifiers, and
b) Mx4 with add-on card VECTOR4 and generic switching power stage

31

Mx4Pro Software

32

Conventional
Servo Amplifiers

Mx4 cnC++ /
HOST <::>

Bus

Four
Motors

»nw O>»0

{

| S

Position Encoders

Mx4 cnC++ with VECTOR4

PWM
DSP Bus Signals

Switching
HOST <::> Mx4 cnC++ <:> VECTOR4 | | N Power Four
Bus Stage Motors

|

Current

Position Encoders

Fig.3-1: Top: Mx4 cnC++ with Conventiona Servo Amplifiers,
Bottom Mx4 cnC++ with VECTORA4 drive control option

Mx4Pro is inclusive of both Mx4 cnC++ and Mx4 cnC++ with VECTOR4
functions and features. The Mx4Pro software package along with Mx4 cnC++
and VECTORA4 provide a powerful system. This combination allows you to
customize the control to almost any combination of motor, encoder and power
technologies, and tune a system for optimum performance.

In this manual, we are concerned with Mx4 cnC++ and the features of Mx4Pro
related to the operation of atraditional servo amplifier Mx4 cnC++ system (Fig. 3-
1, above). In review, Mx4 cnC++ provides the position control for four
coordinated axes. The Mx4 cncC++ outputs (four 16-bit + 10 volt DACs) must be
applied to the inputs of four (current or velocity loop) servo amplifiers.

Mx4Pro Software

Running Mx4Pro

I mportant: Before powering-up Mx4 cnC++ and continuing on with
Mx4Pro, the user should have completed the
verification of their hardware set-up as detailed in the
Mx4 cnC++ User’s Guide.

MX4PRO.EXE is included on the enclosed Mx4 Utilities diskette in the root
directory. The program may be executed from the diskette or transferred onto a
hard drive and run from there. To run Mx4Pro from the floppy, simply type
Mx4Pro at the a:\ DOS prompt. The first Mx4Pro screen isshownin Fig. 3-2.

Motor Technology

Pouwer Electromics Technology
Sensor Technology

Dynamic Move

Quit

DSPCG, Inc.

Fig.3-22 Mx4Pro Main Menu Screen

Using the Keyboard with Mx4Pro

Before you proceed to the next step, we would like to share with you some key
strokes required in proceeding through the Mx4Pro program. With Mx4Pro, you

Mx4 cnC++ User'sGuidevl.1 33

Mx4Pro Software

34

only need to enter numbers representing parameter values, there is no need for
text entry. However, in order to move the cursor from the current position to a
new position or to select an item you need to know about afew keys.

Arrows

PgUp/PgDn

Esc

Space Bar

Home/End

Pause

The Arrow keys are used to move up and down on a
menu. Arrow keys are also used to increase or decrease a
selected value for a Direct Command (in the VECTOR4
menu) by 0.1 valts.

In a Direct Command (using VECTOR4 menu) and Set
Gains, these keys will add (PgUp) or subtract (PgDn) one
volt incrementsto or from a selected value.

ESC will either abort your selection or move cursor back to
the previous choice or menu.

Selects an item identified by a square. As a result of
pressing the Sace Bar a cross sign X will appear on a
selected square.

Using the Home/End keys in a Direct Command (using
VECTOR4 menu) increases (Home) or decreases (End) the
direct output voltage by 0.01 volts.

Stops the operation of Signal Generator and freezes the
last traced signal's on the scope display.

Starting Mx4Pro

The preceding Fig. 3-2 depicts four selectable items on the Main Menu: Motor
Technology, Power Technology, Sensor Technology and Dynamic Move. The
first three selections are relevant only if you have the VECTOR4 drive control

option.

Motor Technology 'Motor Technology' allows the user to choose a

motor technology and set related parameters.
(For VECTOR4 use only.)

Mx4Pro Software

Power Technology 'Power Technology' alows the VECTOR4-
switching power stage interface parameters to be
defined. (For VECTOR4 use only.)

Sensor Technology 'Sensor Technology' is used to define some
encoder and motor parameters for VECTORA4. (For
VECTOR4 useonly.)

Dynamic Move 'Dynamic Move' contains al motion control

functions and features of the Mx4 cnC++ card.

Although thisis amanual for the Mx4 cnC++ controller, we have included a brief
description of the first three main menu choices. If you have purchased Mx4
cnC++ only and are not interested in the VECTOR4 aspects of Mx4Pro, you may
skip Overview Of Mx4Pro Mx4 cnC++ Support and go on to the Running Mx4
cnC++ With Mx4Pro.

Overview of Mx4Pro VECTOR4 Support

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ with the VECTORA4 option controls any combination of brushless
DC, AC induction and brush-type DC motors. In addition to Mx4 cnC++'s
capabilities, VECTOR4 performs all control functions commonly performed by DC
or AC servo amplifier control boards. VECTOR4 customizes the control to motor,
sensor, and power technologies. These three subjects are the first three
selections of the Mx4Pro Main Menu.

Note: Performing a Mx4 cnC++-VECTOR4 command from one of
these menu options will have no effect on aMx4-only system.

35

Mx4Pro Software

36

Motor Technology

If you select Motor Technology from the Main Menu, you will see a menu asking
for the axis to be specified. Use the Arrow keys to select the axis number and
press Enter. On the right hand side of the monitor, a picture of three motors
(brushtype DC on the top, AC induction motor in the middle, and brushless DC
on the bottom) will appear (Fig. 3-3).

<< —— TECHHOLOGY AXIS —— >>

Select one : o Axis 1
o fAxis 2
o fis 3 [<— AXIS 4 NOTOR TUPE —> N
¢ Axis 4

Brushless T C

DSPCG, Inc.

Fig.3-3: Motor Technology Selection Screen (For use with VECTOR4 only.)

Mx4 cnC++ User'sGuidevl.1

Mx4Pro Software

You must use Arrow keys to choose one of the three motor technologies and
press Enter. If you are using an Mx4 cnC++-only system, this selection will have
no effect. As a result of selecting AC Induction or Brushless DC motor
technologies, a menu containing drive parameters will appear. Selecting an item
on this menu will drop awindow allowing you to enter the value(s) for a selected
item(s). For example, you are allowed to enter PID gains if you select Torque
Gains on this menu (see Fig. 3-4). To transmit your parameters to VECTOR4 you
must select Done and press Enter. Pressing Enter on Done will take you back to

the Main Menu.

BRUSHLESS MENU

| Torque Gains
Velocity Gains
Motor Parameter
Current Limit
Field Commmand
Velocity » Torque
View Parameters

I Done

<—— AXIS 4 MOTOR TYPE ——> I

<{ ——— TORQUE LOOF GAINS —— >>

P Gain [EEE]

I Gain
D Gain [EEIY -j pu

Brushless D C

DSPCG, Inc.

Fig. 3-4: Setting Torque Loop Gains for a Brushless DC Motor (For use with

VECTORA4 only.)

37

Mx4Pro Software

Power Technology

Choosing Power Technology from the Main Menu allows you to enter the PWM
frequency. A generic switching power stage merely follows VECTOR4's PWM
command. Here again, to transmit your selected parameters you must select Done
and press Enter.

PUM Frequency
View Parameters

<< — PWM FREQUENCY — >> Done

PUM (KHz) :

DSPCG, Inc.

Fig.3-4. Power Electronics Technology, PWM Frequency Selection (For use
with VECTOR4 only.)

3-8

Mx4 cnC++ User'sGuidevl.1

Mx4Pro Software

Sensor Technology

Sensor Technology enables the user to characterize the motor and encoder for
VECTORA4. The first item is an entry for the number of encoder pulses per one
turn of a shaft in a rotary application. Next is the number of motor poles.
Industrial AC motors may have any number of poles from 2 to 20. The last item
will inform the control of the mounting angle of the commutation sensors (please
see the Mx4 cnC++ User’s Guide, VECTOR4). To transmit parameters to
VECTOR4, sdect Done and press Enter. Remember that if the selected
technology is brushtype DC, there is no need for parameter entry in this part.
This is due to the fact that VECTOR4 uses this information in an AC motor
commutation.

SENSOR MENU

Encoder-Commutation
View Parameters
Done

<< ——— ENCODER TYPE —- >>

Encoder lines : 1880
EN

Number of Poles. :

Hall Sensor Option: [

DSPCG, Inc.

Fig.3-5: Sensor Technology Screen, Setting Encoder Parameters (For use with
VECTORA4 only.)

39

Mx4Pro Software

310

Summary of VECTOR4 Support

The first three Main Menu selections (Motor Technology, Power Technology,
Sensor Technology) are used to program VECTOR4-option parameters. These
parameters are typically programmed only once during the initialization of a Mx4
system. Again, performing a command from one of these menu options will have
no effect on a Mx4-only system. Once these 'VECTOR4' parameters are set, the
operation of a Mx4 system is equivalent to that of a Mx4-only system. That is,
VECTORA4 is a 'transparent’ interface between the Mx4 card and a generic
switching power stage, driving AC or DC motors. The Dynamic Move selection
allows us now to begin experimenting with motion control programming.

Asaresult of choosing Dynamic Move from the Main Menu, a window similar to
Fig. 3-6 will appear on your monitor. At the top of this display you observe atext
field with three columns and four rows. The three columns illustrate values for
position, position error and velocity. The position and position error are
described in "encoder edge counts" (with a quadrature encoder, one encoder
pulse generates four encoder edges). The unit for velocity is "encoder edge
counts per 200 nsec". Each row represents these parameters for one axis.

POSITION ERROR UELOCITY
ax1l = 0 axl =
axég = 0 |axZ =
ax3 = 0 |axd =
axd = 0 |axt =

- DYNA . MENL

fixis Move
Uel. Mode
Contour ing
UECTOR4
Interrupt
Set Gains
Pos Preset
Direct Dac
Max. Acc.
Options
Reset

DSPL OPT.
DONE

(oo R el

-

Fig.5-1: Dynamic Move Main Menu Screen

Mx4Pro Software

On theright hand side of the screen you find the Dynamic Move Menu including
these options:

St op

Axi s Move
Vel . Mode
Cont ouri ng
VECTOR4

I nterrupt
Set Gai ns
Pos Preset
Direct DAC
Max. Acc.
Opti ons
Reset

DSPL OPT.
DONE

The Mx4Pro: Mx4 cnC++ Tuning Expert manua will walk you through this
menu showing various features of Mx4 cnC++.

Mx4 cnC++ User'sGuidevl.1 311

Mx4Pro Software

312

This page intentionally left blank.

4 pr ogramming The Mx4 cnC++

DSP Control Group has incorporated years of experience in the motion control
industry developing Mx4 cnC++'s programming platform.

Host-Based Programming

Low-level Host-based programming entails real-time communication between the
host computer and the Mx4 cnC++ card across the host computer bus. The host
computer may read and write to the Mx4 cnC++ card as it would any computer
peripheral. The user may choose the programming language of the host computer
program. This host program includes the facilities to transfer commands to the
Mx4 cnC++ card through the host bus, any conditional program code execution
routines, PLC emulating code, an optional interrupt service routine to handle any
enabled Mx4 cnC++ interrupts, Mx4 cnC++ system parameter readback routines
and any other software features required for the application. With Host-based
programming, an executable host program runs the operation of the Mx4 cnC++
card in real-time.

® system parameter readback
e host interrupts

HOST
COMPUTER o

® Mx4 cnC++ real-time commands

® code generation ¢ Mx4 cnC++ executes real-time host commands

assembly, C, Pascal, etc.
executable code

® executable program running
on host computer

Fig.4-1: Mx4 cnC++ Host-Based Programming

Mx4 cnC++ User'sGuidevl.1 41

Methods of Programming Mx4 cnC++

42

The Mx4 cnC++ Host-based programming platform includes two types of host-
based commands:

Real Time Commands (RTCs)
Contouring Commands

Any combination of the two types of commands is possible for the four axes of
control.

Real-Time Commands

Real Time Commands (RTCs) are transferred to Mx4 cnC++ through a "window"
in the Mx4 cnC++ Dual Port RAM (DPR). Mx4 cnC++ pollsthe DPR for RTCs. An
RTC is acted upon as soon as Mx4 cnC++ reads it. Multi-axis commands are
executed simultaneously (not multiplexed), resulting in perfect sychronicity for
multi-axis control. As soon as a new command is detected, Mx4 cnC++ executes
it, possibly altering the effects of any previous commands that were not yet
completed. The Mx4 cnC++ Host-based programming command set consists
entirely of RTCs.

Mx4 cnC++ User'sGuidevl.1

Methods of Programming Mx4 cnC++

Contouring

Mx4 cnC++ supports two types of contouring: 2nd order contouring and cubic
spline contouring. Contouring commands consist of segment move commands
from which Mx4 cnC++ performs 2nd order or cubic spline interpolation.
Contouring 'data’ is transferred from the host to Mx4 cnC++ via a ring buffer in
the DPR. See Fig. 4-1. Each segment move consists of a 32 bit position value and
32 bit velocity value for each axis included in the contouring motion. Mx4 cnC++
interpolates between the [position,velocity] points with programmable intervals.
The 'commands are executed in sequence, with execution commencing only
when the previously commanded segment move is complete. A more detailed
discussion of contouring commands can be found in Chapter 6 Mx4 cnC++
Host-Based Programming.

Y |

High Order
Interpolation

=

Dual Port RAM
Ring Buffer

Fig.4-3: Mx4 cnC++ Contouring with Three Axes

43

Methods of Programming Mx4 cnC++

This page intentionally blank.

44

5 Mx4 enC++ Host-Based
| nstruction Set

Host-Based Programming Command Set

The Mx4 cnC++ Host programming platform includes the following Rea Time
Commands (RTCs). These commands along with the previously mentioned
contouring commands, yield a powerful and very flexible motion control
programming platform. The Mx4 cnC++ RTCs are categorized as follows:

Initialization

Commands used to set-up and define system state variables and data reporting
schemes are referred to as initialization commands.

COMMAND DESCRIPTION
ABORTACC specify abort maximum acceleration
HOME preset position counters
HOMESFT position counter reference shift
MAXACC specify maximum acceleration
MTURN define multi-turn position reporting
SYNC configure Mx4 cnC++ as master or slave

Interrupt Control

Mx4 cnC++'s command set includes interrupt control instructions that allow
interrupt conditions to be programmed and the ability to enable and disable Mx4
cnC++- host interrupts.

Mx4 cnC++ User'sGuidevl.1 51

Mx4 cnC++ Host-Based I nstruction Set

52

COMMAND DESCRIPTION
BBINT buffer breakpoint interrupt
DISABL disable the interrupts #1
DISABL2 disable the interrupts #2
ENCOLOS encoder fault / loss interrupt
FERHLT following error / halt interrupt
FERINT following error interrupt
INXINT index pulse interrupt
MCENBL motion complete interrupt
POSBRK position breakpoint interrupt
POSFEED positive feedback interrupt
PRBINT general purpose probe interrupt

Trajectory Control

Trajectory control commands are those that specify closed-loop motion control.

COMMAND

DESCRIPTION

AXMOVE

axis move

STOP

stops the motion

System Diagnostic

System diagnostic commands alow the host to examine internal Mx4 cnC++

parameters and al so provide debug support.

COMMAND

DESCRIPTION

PARREAD

parameter readback

Control Parameter

Instructions used to set state variable control parameters and to tune the control

loops are classified as control parameter commands.

Mx4 cnC++ Host-Based I nstruction Set

COMMAND DESCRIPTION
CTRL control law
KILIMIT integral gain limit
OFFSET amplifier offset cancellation
OUTGAIN position loop output gain

Open Position Loop

Open position loop commands are motion commands based on velocity control

or direct output control.

COMMAND DESCRIPTION
DDAC direct DAC command
VELMODE velocity mode
Contouring

Contouring instructions are those related to the contouring mode of motion.
These commands are used to define contouring parameters such as the
contouring block transfer rate.

Mx4 cnC++ User'sGuidevl.1

COMMAND DESCRIPTION
BTRATE block transfer rate
CUBIC_RATE set cubic spline point transfer rate
CUBIC_SCALE scales position/velocities, also shifts positions
START start contouring motion
VECCHG contouring vector change

Filtering (optional)

COMMAND DESCRIPTION
LOW_PASS implement low pass filter at controller output
NOTCH implement notch filter at controller output

170

53

Mx4 cnC++ Host-Based I nstruction Set

COMMAND DESCRIPTION
DISABORT disable input abort processing
ENABORT enable input abort processing
INPSTATE configure logic state of inputs
OUTREL output relay state

Reset

COMMAND DESCRIPTION

RESET reset Mx4 cnC++ controller card

Mx4 cnC++ RTC Instruction Set

54

The 38 Rea Time Commands are listed in aphabetical order. Some of the
description presented is technical information pertaining to the programming of

the RTCs.

Note: Many instructions include the argument n ("asingle byte bit coding the

axesinvolved"). Theformat of nis:

n = (0000 axis 4 axis 3 axis 2 axis 1) B, where set hit(s) 3, 2, 1 or 0

specifies 4, 3, 2 or 1 respectively.

Mx4 cnC++ State Variables

Mx4 cnC++ Host-Based I nstruction Set

Mx4 cnC++ User'sGuidevl.1

Before programming the Mx4 cnC++ controller, knowledge of Mx4 cnC++'s state
variablesis necessary. The motion state variables are described below.

Acceleration

Following Error

Position

Velocity

Specified in encoder edge counts/(200 ns) It is
presented by a 16-bit unsigned number with 1 bit
integer and 15 bitsfraction.

i.e., acc = 077Bh = 0.0584 counts/(200 ns)?

Specified in encoder edge counts and is presented by
a 32-bit two's complement number with al 32 bits as
integer.

Specified in encoder edge counts and is presented by
a 32-bit two's complement number with al 32 bits as
integer.

Specified in encoder edge counts/200 ns and is
presented by a 27-bit two's complement number, sign
extended to 32 bits. Thisvalueis partitioned as 16 bits
integer and 16 bitsfraction.

i.e., vel = 000A8000h = 10.50 counts/200 ns

55

Mx4 cnC++ Host-Based I nstruction Set

Mx4 cnC++ Host-Based Programming Command Listing

The Mx4 cnC++ Host-based programming RTCs are listed in alphabetical order.
Each command listing follows this format:
FUNCTION indicates the command function

SYNTAX order in which the command arguments must be written
to the DPR Real Time Command buffer'

RTC CODE real time command code

ARGUMENTS command arguments, if any, are defined?

DESCRIPTION explanation of command operation and functionality

SEE ALSO listing of related commands

APPLICATION some hel pful suggestions describing which applications

benefit from the command

EXAMPLE an exampleillustrating the command in use

Contouring for a detailed description of how RTCs are

@ Note 1: See Chapter 6, Mx4 cnC++ Host Programming ... RTCs &
transmitted to the Mx4 cnC++ controller.

56

Mx4 cnC++ User'sGuidevl.1

Y

Mx4 cnC++ Host-Based I nstruction Set

Note2: Many commands include the argument n ("a single byte, bit
coding the axesinvolved"). The bit coding is as follows:

n bit0
bit 1
bit 2
bit 3
bit 4-7

axis1
axis?2
axis3
axis4
unused

For example, 0x3 bit codes axes 1 and 2; OXE hit codes axes 2, 3,

4, etc.

57

Mx4 cnC++ Host-Based I nstruction Set

ABORTACC

FUNCTION Abort Maximum Acceleration
synTAX ABORTACC(n, accy, ... , 8CCy)
RTC CODE 86h
ARGUMENTS
n asingle byte, bit coding the axesinvolved.

acc, 16 bit unsigned value specifying the maximum halting
acceleration (deceleration) for axis x

Note: Acceleration is partitioned into 1 bit integer, 15 bitsfraction.

DESCRIPTION

This command specifies the maximum halting accel eration (decel eration)
for the axes specified. The maximum acceleration values are used in the
following cases: FERHLT interrupt, ESTOP, probe interrupt and input
abort processing.

Note: ABORTACC command will be ignored if the specified
argument is zero.

SEE ALSO FERHLT, PRBINT, STOP, VELMODE

APPLICATION

58

This command sets the maximum possible deceleration for a mechanical
actuator. This RTC isto set the deceleration rate for an emergency case.
In contrast to the Mx4 RTC, ABORTACC provides a sharper
deceleration such that the entire system comes to a stop as rapidly as
possible. Please remember that the STOP and VELMODE RTCs use Mx4
for their accel eration/decel eration.

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

ABORTACC cont.

Command Sequence Example

ABORTACC () ;setthe abort maximum acceleration

CTRL () ;make sure the systemisin closed loop

FERHLT () ;set the maximum tolerance for the following error
;if thefollowing error exceedsthe ABORTACC
;parameter, the system will stop immediately

EXAMPLE

Set an abort maximum acceleration for axes 2 and 3 of 0.5 encoder
counts/200msec?.

(0.5) x 215 = 4000h

The values of the RTC argument are:

n : 06h
acc, 4000h
acc; 4000h

59

Mx4 cnC++ Host-Based I nstruction Set

510

AXMOVE

FUNCTION

Axis Move with Trapezoidal Trajectory

sYNTAX AXMOVE(n, accq, posy, Velq, ..., &Cy, POS,, Vely)

RTC CODE

ARGUMENTS
n
acc,

posy
vel,

Note:

Note:

Note:

DESCRIPTION

60h

asingle byte, bit coding the axesinvolved.
16 bit acceleration for axis x

32 bit end position for axis x

32 bit dew ratefor axisx

Position and velocity are always presented in 2's complement
format, but acceleration is an unsigned value.

Velocity must be presented as a 27 bit 2's complement value
which is sign extended to 32 bits. For example, the maximum
positive velocity is 03FFFFFFh and the maximum negative
velocity is FC000000h.

Velocity is partitioned into 16 bits integer and 16 bits fraction.
Position is a 32 bit integer value, and acceleration is presented
as 1 bit integer, 15 bitsfraction.

The AXMOVE RTC alows for trapezoidal command generation with
specified end point position, slew rate velocity, and acceleration for
each axis. This command is suitable for linear moves.

SEE ALSO

STOP

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

AXMOVE cont.

APPLICATION

This command can be used in almost any imaginable motion control
application. Applications may benefit from this command any time there
isaneed for alinear move from point A to point B in a multi-dimensional
space. To name a few applications. pick and place robots (e.g. in
component insertion), rapid traverse (e.g. in machining) and master
slaving (e.g. in paper processing and packaging) applications.

Command Sequence Example

MAXACC () ;set the maximum accel. to make sure system can be
;stopped

CTRL () ;set the gain values

KILIMIT ()

AXMOVE () ;run the system in axis move (linear trapezoidal) ;mode

MCENBL () ;enable motion complete
;upon the completion of this (command) trajectory
;M X4 generates motion compl ete interrupt

EXAMPLE 1

Assuming current positions of zero for axes 1 and 2, we want to move
axis 1 to the target position of 234567h and axis 2 to the target position
of 112233h. Let's also assume that we want this move to be
accomplished with the slew rate velocity of 200000h (200000h/216
counts/200usec) and acceleration of 150h (150h/2t5 counts/(200p1sec)?)
for both axes.

511

Mx4 cnC++ Host-Based I nstruction Set

512

AXMOVE cont.
.|

The values of the RTC arguments are:

n : 03h
acc; 0150h
pos; : 00234567h
vel; 00200000h
acc, 0150h
pos, : 00112233h
vel, 00200000h

EXAMPLE 2

Assuming a current position of O for axis 4, we want to move axis 4 to
the (negative) target position of FFAAQ000h with a slew rate of
FFEOOOOOh (FFEOOOOOh/26 counts/200usec)(negative velocity) and
acceleration of 150h (150h/215 counts/(200usec)?).

The values of the RTC arguments are:

n : 08h
acc, 0150h
pos, : FFAAOQOQOCh
vel, : FFEOO00Oh

EXAMPLE 3

The host can issue a new axis move command before the previous one
is completed. For example, assume the AXMOVE RTC of Example 1 is
issued by the host. Now, the host changes its mind and decides to stop
axis 2 at a new target position of 334455h with a new slew rate of
100000h. 100000h/26 counts/200usec) and a new acceleration of 200h
(200n/215 counts/(200psec)?). While the AXMOVE of Example 1 is in
progress, the host issues the new command.

Mx4 cnC++ Host-Based I nstruction Set

AXMOVE cont.

The values of the RTC arguments are:

n : 0zh
acc, 0200h
pos, : 00334455h
vel, 00100000h

Mx4 cnC++ User'sGuidevl.1 513

Mx4 cnC++ Host-Based I nstruction Set

BBINT

FUNCTION Buffer Breakpoint Interrupt
syNTAXx BBINT (buffbrk)

RTC CODE 61h

ARGUMENTS

buffbrk 8 bit positive value which represents delta position for the
remaining number of bytes in the ring buffer. Since each point
requires 8 bytes, this number must be multiplied by 8 to
indicate the real number of bytesleft in the DPR ring buffer.

DESCRIPTION

This command will cause an interrupt when the number of instructions
in the ring buffer falls below a preset breakpoint. The buffer breakpoint
interrupt status will appear in bit O of the DPR interrupt flag location
03FEh, 7FEh. Thisbit gets set if the buffer breakpoint interrupt occurs.

SEE ALSO DISABL

APPLICATION

This command must be used in contouring applications. To maintain

continuity in a contouring application, Mx4 must be constantly updated

by the host processor a set of new (position/velocity) points on a
contour. Since no application can afford to run out of points, the host

must set the BBINT to a value such that running the remaining points

(what is left in the ring buffer) will give the host enough time to update
the buffer. For slower hosts, the argument for this command must be
relatively larger.

514

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

BBINT cont.

Command Sequence Example

MAXACC () ;make sure that a system can be stopped
CTRL () ;set the gains

KILIMIT ()
. ;load the ring buffer with contouring points,
;(position and speed)

BTRATE () ;set the block transfer rateto 5, 10, 15 or 20ms
BBINT () ;set the breakpoint in buffer
START (n) ;Start contouring

EXAMPLE

Enable aring buffer breakpoint interrupt for the case that the number of
segment move commands in the ring buffer falls below 30.

The value of the RTC argument is:

buffbrk : 1Eh

515

Mx4 cnC++ Host-Based I nstruction Set

516

BTRATE

FUNCTION Set 2nd Order Contour Block Transfer Rate
sYNTAX BTRATE(m)
RTC CODE 73h

ARGUMENTS

m abyte which selects the block transfer rate for all of the axes. m
isan integer ranged from 0 to 3.

m=0 block transfer rate is 5ms per point

m=1 block transfer rate is 10ms per point
m=2 block transfer rate is 15ms per point
m=3 block transfer rate is 20ms per point

DESCRIPTION

This command sets the 2nd order contouring block transfer rate for the
system. For example, if the block transfer rate is set at 10ms, the time
interval between each point in the ring buffer is'10ms (e.g. the DSP will
interpolate each point for 10ms).

Note: Host should not adjust the block transfer rate when contouring
isin process.

Note: Thedefault block transfer rateis set at 5ms per point.

SEE ALSO CUBIC_RATE

Mx4 cnC++ Host-Based I nstruction Set

BTRATE cont.

APPLICATION

This command is useful in 2nd order contouring applications.
Depending on the capability of the host processor, position/velocity
points on multi-dimensional trajectories may be broken down to the
points that (timewise) may be near or far from each other. Clearly, slower
CPUs are capable of breaking down geometries to position and velocity
points that are widely spaced in time. This instruction makes the time
interval in between the two adjacent points (in contouring)
programmable. Please remember that regardless of the value
programmed for this time interval (5, 10, 15 or 20ms), Mx4 will internally
perform a high-order interpolation of the points breaking them down to
200 rrsec.

Command Sequence Example

See BBINT

EXAMPLE

Set a contouring interpolation interval of 10msec.
Thevalue of the RTC argument is:

m : 01h

Mx4 cnC++ User'sGuidevl.1 517

Mx4 cnC++ Host-Based I nstruction Set

518

CTRL

FUNCTION Control Law Parameters
syNTAx CTRL(N, paryy, ..., parg, - » P&y, -, Pah4)
RTC CODE 62h
ARGUMENTS
n asingle byte, bit coding the axesinvolved.
par,,(K;) 16 bit unsigned value for the first control parameter
for axisx.
par,(Ky) 16 bit unsigned value for the second control
parameter for axisx.
par,;(Ky) 16 bit unsigned value for the third control parameter
for axisx.
par,,(Kg) 16 bit unsigned value for the fourth control parameter
for axisx.

DESCRIPTION

This command performs a state feedback control algorithm combined
with a modified PID. The state feedback control algorithm includes an
observer which estimates the instantaneous values for speed and
acceleration. The feedback loops are then individually commanded to
provide arobust control which is smooth and stable over awide rage of
servo operation. In addition this algorithm performs a modified PID with
the saturation threshold set for integral action. A common PID includes
two zeros and one pole which may not be suitable for systems with
noisy feedback. Also, the integral part of a common PID algorithm may
saturate the registers creating overshoots or other forms of instability.
A modified PID includes a second pole to solve the latter problem and a
programmable integral limit to solve the former one.

In the modified PID agorithm; parl, par2, par3, and par4 are values
representing the integral, proportional, velocity state feed forward, and
differential gains, respectively.

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

CTRL cont.

Scaling Factors

The DSP uses an internal scaling factor for each gain. These factors
have been optimally selected for worst case numerical conditions.

These factors are:
GAIN SCALING FACTOR
Kf 215
Ky 2’
K 1
Ky (17 21
Output Loop 20 (volts) / 2%
Gain
For example,

50 counts of position error and K, of 1 (other gains are zero) will result
in an output voltage of 976 millivolts.

i.e50° 1° 277 20/(217)=0976

to DAC

Sampling Period

PacTuAL

Figure5-2: Block Diagram of Control Law

SEE ALSO KILIMIT, OFFSET, OUTGAIN

519

Mx4 cnC++ Host-Based I nstruction Set

CTRL cont.

APPLICATION

This command is used in al position/velocity control tuning
applications. For more information on the effectiveness of each gain on
system dynamic response, please refer to Chapter 3 on Mx4 cnC++Pro.
Running MX4 with Mx4 cnC++Pro of that chapter will help you
understand the significance of gainsin tuning. Please read this section
even if you cannot run Mx4 cnC++Pro on your machine because it
lacks the DOS operating system.

Command Sequence Example

See AXMOVE and VELMODE

EXAMPLE

Set the following modified PID gain values for axes 2 and 4

Ki = 100
Ko = 4000
Kf = 3000
Kd = 2500
Ki = 20
Ko = 8000
Kf = 5500
Kd = 7000

The values of the RTC arguments are:

n : OAh
par,, : 0064h
par,, : OFAGCh
par,; : 0BB8h
par,, : 09C4h
par,, : 0014h
par,, : 1F40h
par,; : 157Ch
pary, : 1658h

520

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

CUBIC_RATE

FUNCTION Set Cubic Spline Point Transfer Rate

SYNTAX CUBIC RATE (m)
RTC CODE 8%h
ARGUMENTS
m a 16-bit parameter coding the value for cubic spline

transfer rate. "m" codes the time interval between the
adjacent position/velocity points. Its value ranges
between 5 and 511 and when divided by 5 it represents the
interval in ms. For example, m=5 represents the time
interval of 1 msand m=25isa5 msinterval.

DESCRIPTION

This command sets the point transfer rate for the cubic spline. The
"transfer rate" sets the interval between two adjacent points in the
cubic spline ring buffer. The two adjacent points can be spaced
anywhere between 1.0 to 102.4 ms. Mx4's cubic spline interpolates
between the two adjacent points at 200 s increments. This means for
example, Mx4 interpolates 500 points between two adjacent points 100
ms apart. Position and velocity points in the ring buffer are organized
similar to the way they arein ordinary contouring. That is, every pointis
represented by eight bytes - four for position and four for velocity.

Since velocity is numerically presented by a 25-bit two's complement
number (8 bits (absolute) integer, 16 bits fractional) the upper most
significant four bits of 32-bit long velocity are used to code the axes for
which the position/vel ocity points have been specified. For example, the
following 32-bit number, 30 55 66 77h specifies velocity value 0 55 66
77h in cubic spline interpolation involving axis 1 and axis 2 (i.e,, 3 =
0011). Note that the 4-bit axis coding is only used in cubic spline -
ordinary contouring lacks this feature. Mx4's other contouring feature
(i.e., 2nd order) uses the VECCHG RTC to encode the axesinvolved in a
contouring task.

521

Mx4 cnC++ Host-Based I nstruction Set

522

CUBIC_RATE cont.

The contouring strategy can be switched between cubic spline and 2nd
order using CUBIC_RATE and BTRATE, respectively. It may take up to
500 ms to execute a CUBIC_RATE. Once a CUBIC_RATE is issued,
there is no need to re-issue this command.

The ring buffer breakpoint interrupt cannot detect less than 5 ms worth
of points. This imposes a constraint on the minimum number of points

for short block transfer rates such as 1 ms. For example, for 1 ms block

transfer rate, aminimum of 5 pointsin the ring buffer is required.

buffer_break _point(m)
for b.t. rateof 1 ms
for b.t. rateof 5ms

SEE ALSO
APPLICATION

BBINT, BTRATE, CUBIC_SCALE

Refer to Cubic Spline Application Notes.

EXAMPLE

m is number of pos/vel pointsin ring buffer
5£ m< 84 points
1£m< 84 points

Using cubic splineinterpolation create 16, 32, 64 and 128-point circles.

The following shows the position and velocity values for 16 uniformly
spaced pointson acircle.

16-point Circle

Point pos x actual_vel_x coded_ve_x
x1 2500 (0x000009C4h) 0 (0x00000000h) 0x30000000h
X2 2310 (0x00000906h) |-61554 (OxFFFFOF8Eh) | O0x3FFFOF8Eh

x16 2310 (0x00000906h) |+61554 (0x0000F072h) | 0x3000F072h

CUBIC_RATE cont.

Mx4 cnC++ Host-Based I nstruction Set

Mx4 cnC++ User'sGuidevl.1

Point pos y actual_vel_y coded_vd_y
x1 0 (0x00000000h) 160850 (0x00027452h) | 0x30027452h
X2 957 (0x000003BDh) [148610 (0x00024482h)| 0x30024482h
x16 -957 (OXxFFFFFC43h) | 148610 (0x00024482h) [0x30024482h

To generate a circle, these points must be written to Mx4's cubic spline
ring buffer and CUBIC_RATE must be executed. The CUBIC_RATE
argument determines the interval between two points of the ring buffer.
If the number of points on atrajectory (i.e., circle) exceeds the size of the
ring buffer, the BBINT (buffer breakpoint interrupt) RTC must be used.
This command, sets the breakpoint where the host must load more
points to the ring buffer. This way the CPU will refresh the ring buffer
on a continuous basis. For comparison, the following figures illustrate
the circles created by 16, 32, 64 and 128 points in a cubic spline
interpolation. It takes 1.28 seconds to compl ete these circles.

ez & o stog the potiow

-__:_:-_-:?":r;_'_'_ - _“__-L%-.:,

1 Ry
f \
|!I
.:I_ i
i) I,
\ |

N 7

Sl
| -__..<-»+"‘/

16 points; b.t. rate =80 ms

523

Mx4 cnC++ Host-Based I nstruction Set

524

CUBIC_RATE cont.

mr

Freas B to stog the rotios

\
T

32 points; b.t. rate=40ms

ez & o stog the potiow

64 points; b.t. rate=20ms

Mx4 cnC++ User'sGuidevl.1

CUBIC_RATE cont.

Mx4 cnC++ Host-Based I nstruction Set

Freas B to stog the rotios

P

e

128 points; b.t. rate= 10 ms

525

Mx4 cnC++ Host-Based I nstruction Set

5-26

CUBIC_SCALE

FUNCTION Scale Cubic Spline Data Points

SYNTAX CUBIC_SCALE (n, pv_multy, pos_shift,, ..., pv_mult,,
pos_shifty)
RTC CODE 8Bh
ARGUMENTS
n asingle byte, bit coding the axesinvolved

pv_multx position / velocity scaling multiplier for axis x. Thisis a 16-
bit two's complement number with one sign bit, one
integer bit, and fourteen bits fraction.

pos_shiftx position shifter for axis x. This is a 32-bit two's
complement integer number that transfers the position to a
new origin.
DESCRIPTION

This command scales those data points involved in a cubic spline
operation. This command also shifts the positions involved by a user
defined position shift value.

SEE ALSO CUBIC_RATE
APPLICATION See Cubic Spline Application Notes

EXAMPLE
Set ascale of 0.5 for all axis 2 cubic spline data points. No position shift
isdesired.

The values of the RTC arguments are:

n : Oox02h
pv_mult, : (0x2000h
pos_shift, : 0x00000000h

Mx4 cnC++ Host-Based I nstruction Set

DDAC

FUNCTION Direct DAC Output
synTax DDAC(n,vay, ..., va,)

RTC CODE 63h

ARGUMENTS

n asingle byte, bit coding the axesinvolved.
val, 16 bit value specifying the 16 bit DA C output voltage for axis x.

Thevaluesrange asfollows:

FFFFh : -10(1/32768)v output
8000h -10v output
TFFFh +10v output
0000h Ov output

DESCRIPTION

Specifies a bipolar analog signal ranging from -10 to +10 volts with a
resolution of 0.3 millivolts.

SEE ALSO none

APPLICATION
This command can be used in applications where the voltage command
provides adequate control. Voltage commands can be applied to a

torque loop (for torque control applications in robotics) or a velocity
loop (to a spindle axis in machine tool applications).

Mx4 cnC++ User'sGuidevl.1 527

Mx4 cnC++ Host-Based I nstruction Set

DDAC cont.

Command Sequence Example

No preparation is required before running thisinstruction.

EXAMPLE

Output +3.7 voltsto the axis 4 DAC (DAC4 M X4 connector signal).
(#1) " 7FFFh = 2F5Ch
The values of the RTC arguments are:

n : 08h
val, : 2F5Ch

528

Mx4 cnC++ Host-Based I nstruction Set

DISABL

FUNCTION Disable Interrupts

syNTAX DISABL(n, m, ..., my,)

RTC CODE 64h
ARGUMENTS
n asingle byte, bit coding the axesinvolved.

m, a single byte, bit mapping the interrupts to disable for axis x
(setting a bit to one indicates disabling an interrupt).

bit7 : -

bité : motion complete
bit5 : index

bit4 : probe

bit3 : position breakpoint
bit2 : following error

bitl : followingerror/ halt

bit0O : buffer breakpoint

DESCRIPTION

This command disables some or all of the servo control card interrupts.

SEE ALSO BBINT, DISABLZ2, PRBINT, FERHLT, FERINT, INXINT,
MCENBL, POSBRK

APPLICATION

This command may be used in conjunction with all applications in
which only a few interrupts are needed to be enabled. Also a few
enabled interrupts may have to be disabled based on external events.

Mx4 cnC++ User'sGuidevl.1 529

Mx4 cnC++ Host-Based I nstruction Set

DISABL cont.

__
Command Sequence Example
No preparation is required before running thisinstruction.

EXAMPLE

Disable the previously enabled axis 1 following error and axis 3 index
pulse interrupts.

The values of the RTC arguments are:
05h

n .
m 04h
m 20h

530

Mx4 cnC++ Host-Based I nstruction Set

DISABL2

FUNCTION Disable Interrupts

sYNTAX DISABL2(n, my, ..., m,)

RTC CODE 5Ah
ARGUMENTS
n asingle byte, bit mapping the axesinvolved.

m, a single byte, bit mapping the interrupts to disable axis x
(setting a bit to one indicates disabling an interrupt).

bit7 : notused

: : notused
bit2 : notused
bitl : encoderloss

bit0O : positivefeedback

DESCRIPTION

This command disables some of the servo control card interrupts.

SEE ALSO DISABL, ENCOLQOS, POSFEED

APPLICATION

In servo applications checking for failures such as encoder loss or
positive feedback loop is a task performed on power-up. Once an
application is assured of proper feedback polarity, the encoder loss and
positive feedback interrupts may be disabled throughout the entire
application.

Mx4 cnC++ User'sGuidevl.1 531

Mx4 cnC++ Host-Based I nstruction Set

DISABLZ2 cont.

Command Sequence Example

No preparation is required before running thisinstruction.
EXAMPLE

Disable the previously enabled axis encoder loss and axes 1 and 4
positive feedback interrupts.

n : 0%h
m 03h
my : 01h

532

Mx4 cnC++ Host-Based I nstruction Set

DISABORT

FUNCTION Disable Input Abort Processing
syNTAX DISABORT(n, dabort, ..., dabort)

RTC CODE 57h
ARGUMENTS
n asingle byte, bit coding the axesinvolved.

dabort, asingle byte, bit mapping the input disablesfor axis x.

bit=0 : no changein enable/disable status
bit=1 : disabletheinterrupt processing

bit7 : unused

bit6é : unused

bit5 : gen. purposeinput 4, gen. purposeinput 5 input*
bit4 : unused

bit3 : unused

bit2 : unused

bitl : -O.T.inputforaxisx

bitO : +O.T.input for axisx

Note: * Bit 5 is used to select the enable/disable status of inputs
gen. purpose input and gen. purpose input 5. When axis 1 is
selected, bit 5 corresponds to gen. purpose input 4. When
axis 2 is selected, bit 5 corresponds to gen. purpose input 5.
If either axis 3 or axis 4 is selected, bit 5 of the corresponding
bytesisan "unused" bit.

DESCRIPTION

This command allows the user to disable the interrupt and interrupt
processing for the specified inputs.

SEE ALSO DISABL, DISABL2, ENABORT

Mx4 cnC++ User'sGuidevl.1 533

Mx4 cnC++ Host-Based I nstruction Set

DISABORT cont.
I ——

APPLICATION

This RTC is used when one or several inputs of MX4 CNC++000MB-10
need to be used as general purpose inputs. Using this command
disables an interrupt (as well as interrupt processing) that occurs when
an input signal is set.

Command Sequence Example
No preparation is required before running thisinstruction.

EXAMPLE

Disableinputs+ O.T.and - O.T. for axis 1 and 2:

Thevalue of the RTC argument is:

n : 03h
dabort; : 03h
dabort, : 03h

534

Mx4 cnC++ Host-Based I nstruction Set

ENABORT

FUNCTION Enable Input Abort Processing
synTAx ENABORT(n, my, eabort 4, ..., my, eabort,)
RTC CODE 58h

ARGUMENTS

n asingle byte, bit coding the axesinvolved.

m asingle byte, bit coding the axes to be halted upon receipt of
an active input condition on an enabled input of axis x.

eabort, asingle byte, bit mapping the input enables for axis x.

bit=0 : no changein enable/disable status

bit=1 : enabletheinterrupt processing

bit7 : unused

bit6é : unused

bit5 : gen. purposeinput 4, gen. purpose input 5 input*
bit4 : unused

bit3 : unused

bit2 : unused

bitl : -O.T.inputforaxisx

bitO : +O.T.input for axisx

Note: * Bit 5 is used to select the enable/disable status of inputs
gen. purpose input 4 and gen. purpose input 5. When axis 1
is selected, bit 5 corresponds to gen. purpose input 4. When
axis 2 is selected, bit 5 corresponds to gen. purpose input 5.
If either axis 3 or axis 4 is selected, bit 5 of the corresponding
bytesisan "unused" bit.

Mx4 cnC++ User'sGuidevl.1 535

Mx4 cnC++ Host-Based I nstruction Set

5-36

ENABORT cont.

DESCRIPTION

This command allows the user to enable the interrupt and interrupt
processing for the specified inputs. If any enabled active input
condition of axis x is received by MX4, the axes specified by the m,
argument will be halted (similar to ESTOP). The interrupt condition is
recorded in DPR interrupt status register location 009h. The DPR status
register location 00Dh will identify the axis or axes responsible. DPR
locations 094h-096h identify the input status in real-time (yielding the
interrupt type and source). Bit 6 of DPR locations 3FEh, 7FEh is also set.

SEE ALSO DISABORT, INPSTATE, PRBINT

APPLICATION

This command in conjunction with limit switches mounted on a machine
may be used to bring a system (or part of a system) to an immediate
stop. Enabling the abort aimed at a particular axis will bring that axisto a
halt. This happens when input(s) selected by this command is (are) set.

Command Sequence Example

No preparation is required before running thisinstruction.

Enable abort for + O.T. input of axis 1 and - O.T. input of axis 2. When
the axis 1 input is set, axes 3 and 4 are to be stopped. When the axis 2
input is set, al of the axes are to be stopped.

n : 03h
my : 0Ch
eabort; : 01h
mp : OFh
eabort, : 0zh

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

ENCOLOS

FUNCTION Encoder Loss Interrupt

sYNTAXx ENCOLOS(n)

RTC CODE 5Ch
ARGUMENTS
n asingle byte, bit coding the axesinvolved.

DESCRIPTION

This command enables the encoder loss interrupt for the specified axes.
Encoder loss interrupt is generated if the following conditions are met
(for the axisin question):

1. Following Error is> 2000 counts

2. If the command position changes, the actual position does
not change.
3. Theabove 3 conditions hold for 0.3 seconds

The DPR interrupt status locations 009h and 00Bh record the
occurrence and source of this interrupt. Bit 6 of DPR locations 3FEh,
7FEh isalso set.

SEE ALSO DISABL2

APPLICATION

A necessary diagnostic feature for all servo control applications.

Command Sequence Example

No preparation is required before running thisinstruction.
EXAMPLE

Enable the encoder lossinterrupt for both axis 3 and axis 4.
Thevalue of the RTC argument is:

n : 0Ch

537

Mx4 cnC++ Host-Based I nstruction Set

FERHLT

FUNCTION Following Error Interrupt and Halt

syNTAX FERHLT(n, fery, ..., fer,)

RTC CODE 66h

ARGUMENTS
n asingle byte, bit coding the axesinvolved.
fer, 16 bit unsigned following error for axis x.

DESCRIPTION

Upon execution of this command, if at any time the following error for a
specified axis exceeds it's programmed value, the system will halt and
generate an interrupt. The halt brings the motion of the axis in question
to a stop using the programmed abort maximum acceleration rate. This
interrupt condition is recorded in DPR interrupt status register location
000h. The DPR status register location 00lh reveals the axis(s)
responsible. Bit 1 of DPR locations 3FEh, 7FEh is also set.

Note: FERHLT command will be ignored if the respective axis abort
maximum acceleration is zero.

Note: Following error / halt interrupt is not disabled after it occurs.
The host isresponsible for disabling the interrupt.

SEE ALSO DISABL, FERINT, ABORTACC

APPLICATION

5-38

Applications of this command are similar to FERINT. However, as a
result of this command's interrupt, the system will come to a stop. Stop
trajectory uses the programmed abort maximum acceleration. Please see
ABORTACC. Please note that this command is not appropriate to
prevent system run-away in case of encoder loss - since in the absence
of encoder, the system cannot be stopped reliably.

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

FERHLT cont.

Command Sequence Example

ABORTACC () ;make sure system can be stopped
CTRL () ;these instructions enable system to stop motion
KILIMIT () ;set gains

FERHLT ()

EXAMPLE

Enable a following error/halt interrupt for axis 3 with a threshold of 100
encoder counts.

The values of the RTC arguments are:

n : 04h
fer; 0064h

539

Mx4 cnC++ Host-Based I nstruction Set

540

FERINT

FUNCTION Following Error Interrupt

synTAax FERINT(n, fery, ..., fer,)

RTC CODE 67h

ARGUMENTS
n asingle byte, bit coding the axesinvolved.
fer, 16 bit unsigned following error for axis x.

DESCRIPTION

Upon the execution of this command, if at any time the following error
for a specified axis exceeds it's programmed value, the servo control
card will generate an interrupt. This condition is recorded in DPR
interrupt status register location 000h. The DPR status register location
02h will identify the axis(s) responsible. Bit 1 of DPR locations 3FEh,
7EFh isalso set.

Note: Following error interrupt is not disabled after it occurs. The
host is responsible for disabling the interrupt.

SEE ALSO DISABL, FERHLT

APPLICATION

This command may be used in all applications for two main reasons.
First, FERINT reports arun-away or any other out-of-control condition.
Second, it makes sure that position error is within a specified (a
programmed argument for FERINT) tolerance.

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

FERINT cont.

Command Sequence Example

No preparation is required before running thisinstruction.

EXAMPLE

Set aFERINT interrupt value of 200 encoder countsfor axis 1.
The values of the RTC arguments are:

n : 01h
fer, 00C8h

541

Mx4 cnC++ Host-Based I nstruction Set

HOME

FUNCTION Preset Position Counter

synNTAX HOME(n, pset, ..., pset,)

RTC CODE 68h
ARGUMENTS
n asingle byte, bit coding the axesinvolved.
pset, 32 bit two's complement value to preset the axis x position
counter.

DESCRIPTION
This command will define the present position point for the axes
specified.

Note:. HOME command will automatically disable the position
breakpoint interrupt (if enabled). HOME can be executed only
when the axes specified are not in motion.

SEE ALSO HOMESFT, POSBRK

APPLICATION

This command is useful when the position counter must be forced to a
new value. This command may be used in the establishment of a new
reference potion. Please also see HOMESFT.

542

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

HOME cont.

Command Sequence Example

No preparation is required before running thisinstruction.

EXAMPLE

Set the present position of axis 4 to 50,000 counts.
The values of the RTC arguments are:

n : 08h
pset, : 0000C350h

543

Mx4 cnC++ Host-Based I nstruction Set

544

HOMESFT

FUNCTION Home Reference Shift

syNTAX HOMESFT(n, psfty, ... , psft,)

RTC CODE 5Dh
ARGUMENTS
n asingle byte, bit coding the axesinvolved.
psft, 32 bit two's complement value to add to the axis x position
counter.

DESCRIPTION

This command will shift the present position point for the axes
specified.

Note: HOMESFT command will automatically disable the position
breakpoint interrupt (if enabled) of the specified axes.

SEE ALSO HOME, POSBRK

APPLICATION

This command may be used in homing a linear system based on index
pulse position recording. Adding offset position (in encoder edge
counts) to an already recorded position, presets position to a new value
without losing position integrity (i.e. no counter information islost). See
also INXINT and HOME.

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

HOMESFT cont.

Command Sequence Example

No preparation is required before running thisinstruction.

EXAMPLE

The current axis 1 position is 100h. Shift the axis 1 position to 20100h.
The current axis 3 position is 1010h. Shift the axis 3 position to 1000h.

The values of the RTC arguments are:
n : 05h

psft; : 00020000h
psft; : FFFFFFFOh

5-45

Mx4 cnC++ Host-Based I nstruction Set

INPSTATE

FUNCTION Configure Logic State of Inputs
sYNTAX INPSTATE(inpy, inpy, inp3)

RTC CODE 88h

ARGUMENTS

inpp asingle byte, coding the logic state of inputs.

bit=0 active LOW input

bit=1 active HIGH input

bit 7 : axis4 -O.T.input
bit 6 : axis3 -O.T.input
bit 5 : axis2 -O.T.input
bit 4 : axisl -O.T.input
bit 3 : axis4 +O.T.input
bit 2 : axis3 +O.T.input
bit 1 : axis2 +O.T.input
bit 0 : axisl +O.T.input

inpy asingle byte, unused (i.e., set to 00h)

inp3 asingle byte, coding the logic state of inputs.

bit=0 : active LOW input

bit=1 active HIGH input
bit6-7 : unused

bit 5 : general purpose input 5
bit 4 : general purpose input 4
bit0-3 : unused

5-46

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

INPSTATE cont.

DESCRIPTION

This command allows the user to define the logic state of the Mx4
cnC++ inputs. Each input may be configured as active LOW or active
HIGH (TTL logic levels) (the Mx4 cnC++ inputs are level sensitive).

Note: At power-up and reset, Mx4 cnC++ inputs default as active
LOW.

SEE ALSO ENABORT

EXAMPLE

Configure the +O.T. inputs of axes 1-4 as active HIGH inputs. The
remaining inputs are to be configured as active LOW.

The value of the RTC argumentsis:

inpy OFh
inp2 00h
inp3 00h

547

Mx4 cnC++ Host-Based I nstruction Set

INXINT

FUNCTION Index Pulse Interrupt
sYNTAX INXINT(n)
RTC CODE 6%
ARGUMENTS
n asingle byte, bit coding the only axisinvolved.

DESCRIPTION

Upon the execution of this command, the servo control card will search
for the first index pulse edge from the specified axis. The pulse edge
results in the generation of an interrupt and registration of the actual
position for all axes in DPR locations 103h - 112h. The DPR interrupt
status register locations 000h and 003h record the occurrence and
source of thisinterrupt. Bit 1 of DPR locations 3FEh, 7EFh is also set.

Note: Only one index pulse can generate an interrupt at any given
time. The INXINT command enables the index pulse interrupt
for the axis specified and automatically disables the previous
one (if any).

Note: The index pulse interrupt and general purpose external
interrupt CAN BE ENABLED simultaneously.

SEE ALSO DISABL, HOME, HOMESFT

APPLICAT

5-48

ION

This command is used in homing applications. As a result of this
instruction, Mx4 cnC+ will start searching for the first index pulse edge.
Upon the detection of an index pulse edge, position of the axis is
immediately recorded. Thisinstruction must be used in conjunction with
HOME to perform homing for linear table (or other index-based) position
calibration.

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

INXINT cont.

Command Sequence Example

No preparation is required before running thisinstruction.

EXAMPLE

Enable the index pulse interrupt for axis 4.
Thevalue of the RTC argument is:

n : 08h

5-49

Mx4 cnC++ Host-Based I nstruction Set

550

KILIMIT

FUNCTION Integral Gain Limit
synTAax KILIMIT(n, vay, ..., val,)
RTC CODE 74h
ARGUMENTS
n asingle byte, bit coding the axesinvolved.
val, asingle byte value specifying the limit of the integral action for
each axis.

Note: O<=val<=14

val = 0 indicates no limit on integration channels
val = 14 indicates maximum limit on integration channels

For example,

Kilimitva =0
Kilimitva =1
Kilimitva =2
Kilimitva =3

DESCRIPTION

+/- 10v DAC action from K; control law parameter
+/- 5v DAC action from K; control law parameter
+/- 2.5v DAC action from K; control law parameter
+/- 1.25v DAC action from K; control law parameter

This command is used to set the limit for integral action related to the
choice of pary, inthe CTRL RTC. Integral limit is specified for each axis.
Default val, are setto O (i.e. no limit on integration channels).

SEE ALSO CTRL

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

KILIMIT cont.

APPLICATION

This command clamps the integral channel by reducing this channel's
saturation level. Reducing the saturation level will reduce the channel's
depletion time. Using this instruction is essential where large integral
gain is required. Clamping the integral channel will let the system zero
position error without alengthy "creeping motion" to itstarget position.

Command Sequence Example

CTRL () ;set gains
KILIMIT () ;thisinstruction may be used before or after CT RL

EXAMPLE

Set amaximum limit on the integral action of axis 2.
The values of the RTC arguments are:

n = 02h
val, = OEh

551

Mx4 cnC++ Host-Based I nstruction Set

LOW_PASS (option)

FUNCTION Implement Low Pass Filter at Controller Output
SYNTAX LOW_PASS(n, Freqy, ..., Fregs)
RTC CODE 8Eh

NOTCH, therefore one option (either LOW_PASS or NOTCH)

@ Note: This RTC code (8Eh) is the same as the one used with
can be used at any time.

ARGUMENTS
n bit coding of the only specified axis
fregy unsigned value specifying the low pass filter cut-off
frequency for axis x
O£ freg, £1850
DESCRIPTION
This command implements a low pass filter at the controller output for
the specified axis.
Yn ST

Pn_+ P:
Low Pass
—.C) Output t©
1- Filter Loop Gain

K jLimit

Kalman
Filter
Sampling Period

X

Y PacTUAL

Fig. 4-2: Mx4 Block Diagram with Low Pess Filter

552

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

LOW_PASS cont.

Thelow passfilter implements the following transfer function:

_ v
(s = & + 220, 8+ W

where, w, = 2pf,, f, = cut-off frequency, and z=0.6

The frequency and bandwidth of the low passfilter is programmable.

Note: By programming a cut-off frequency of 0, the low passfilter for
the specified axisis disabled.

SEE ALSO none

LOW_PASS cont.

553

Mx4 cnC++ Host-Based I nstruction Set

EXAMPLE: RTC Programming Low Pass

The LOW_PASS RTC uses the coded values for low pass frequency.
Table 4-1 shows these coded values. Use of the index table is only
necessary with RTCs.

Set alow passfilter at 275 Hz for axis 3.
The following shows the DPR's byte stream:
3c2 xh ;command code

3c3 xh ;aXis3
3c4 OAh ;index to element 10 of frequency table (275 Hz)

FREQ (Hz) FREQ Index FREQ (Hz) FREQ Index

disable filter 0 750 24
50 1 800 25
75 2 850 26
100 3 900 27
125 4 950 28
150 5 1000 29
175 6 1050 30
200 7 1100 31
225 8 1150 32
250 9 1200 33
275 10 1250 34
300 11 1300 35
325 12 1350 36
350 13 1400 37
375 14 1450 38
400 15 1500 39
425 16 1550 40
450 17 1600 41
475 18 1650 42
500 19 1700 43
550 20 1750 44
600 21 1800 45
650 22 1850 46
700 23

Low Pass Filter Frequency Index

554

Mx4 cnC++ Host-Based I nstruction Set

MAXACC

FUNCTION Maximum Acceleration
synTAax MAXACC(n, accy, ... , accy)

RTC CODE 71h

ARGUMENTS

n asingle byte, bit coding the axesinvolved.
acc, 16 bit unsigned value specifying the maximum acceleration /
deceleration for axis x.

Note: Accelerationis partitioned into 1 bit integer, 15 bits fraction.

DESCRIPTION

This command specifies the maximum acceleration / deceleration for the
axes specified. The maximum acceleration values are used with the
VELMODE and STOP RTCs.

Note: MAXACC command will be ignored if the specified argument
iszero.

SEE ALSO STOP, VELMODE

APPLICATION
This command sets the maximum acceleration affordable by servo drive
and motor combination. It is useful to program this parameter such that

the system will not go to control saturation during the VELMODE or
STOP command.

Mx4 cnC++ User'sGuidevl.1 555

Mx4 cnC++ Host-Based I nstruction Set

MAXACC cont.

Command Sequence Example

MAXACC () ;make sure system can be stopped
CTRL () ;set gains
KILIMIT ()

AXMOVE () ;run system in axis move
VELMODE() ;runsysteminvelocity mode

EXAMPLE

Set a maximum acceleration for axes 2 and 3 of 0.25 encoder counts /
(200nsec)?.

(0.25)" 215 = 2000h

The values of the RTC arguments are:

n : 06h
acc, 2000h
acc; 2000h

5-56

Mx4 cnC++ Host-Based I nstruction Set

MCENBL

FUNCTION Motion Complete I nterrupt
synNTAX MCENBL(N)

RTC CODE 65h
ARGUMENTS

n asingle byte, bit coding the axesinvolved.
DESCRIPTION

This command enables the motion complete interrupt for the axes
specified. The motion complete interrupt is generated when any motion
comes to a stop. The DPR interrupt status register locations 000h and
005h record the occurrence and source of this interrupt. Bit 1 of DPR
locations 3FEh, 7FEh is also set.

Note: Motion complete interrupt is not disabled after it occurs. The
host isresponsible for disabling the interrupt.

SEE ALSO DISABL

APPLICATION

In any application that a new routine must run based on the end of a
motion, this command informs the host of motion completion. An
example of such an application is milling in which the spindle and z axes
will start moving only when the x-y table has moved to atarget position.

Mx4 cnC++ User'sGuidevl.1 557

Mx4 cnC++ Host-Based I nstruction Set

MCENBL cont.

Command Sequence Example

See AXMOVE and STOP

EXAMPLE

Enable the motion compl ete interrupt for all four axes.
Thevalue of the RTC argument is:

n : OFh

5-58

Mx4 cnC++ Host-Based I nstruction Set

MTURN

FUNCTION Multi-Turn Position Reporting

syNTAX MTURN(N, my, ..., my)

RTC CODE 82h
ARGUMENTS
n asingle byte, bit coding the axesinvolved.
m, a positive 16 bit value specifying the multi-turn base in

encoder counts.

0£m, £ 32768

DESCRIPTION

Multi-turn position reporting for each axisis available in DPR locations
097h - 0A6h (see Parameter Updates, Dual Port RAM Partitioning).
This command alows the multi-turn base for specified axes to be
programmed.

Multi-turn positions are calculated as offsets from position 0 described
in terms of the number of turns and fraction of complete turn (described
in terms of encoder counts) to reach the current actual position value.
The multi-turn base is defined as the number of encoder counts per one
‘multi-turn’ turn.

For example, with a multi-turn base of 1000 encoder counts and an
actual position of -32,555 counts, the multi-turn position values in the

DPR will yidd:
MTURN : -32
MFRAC : -555
SEE ALSO none

Mx4 cnC++ User'sGuidevl.1 559

Mx4 cnC++ Host-Based I nstruction Set

5-60

MTURN cont.

APPLICATION

This command will change the numerical base for the position of an axis
to a programmable value. For example, in spindle applications, the
number of turns (integer as well as fractional part) can be recorded. That
is, position may be monitored as a function of the shaft's angular
position.

Command Sequence Example

MAXACC () ;make sure system can be stopped
CTRL () ;set gains
KILIMIT ()

AXMOVE () ;run system in axis move (linear trapezoidal) mode
MTURN ()

EXAMPLE

Set amulti-turn base of 1000 encoder counts for axis 2.
The values of the RTC arguments are:

n : 02h
m 03E8h

Mx4 cnC++ Host-Based I nstruction Set

NOTCH (option)
FUNCTION Implement Notch Filter at Controller Output
SYNTAX NOTCH(n, freqq, dq, ..., freds, 04)

RTC CODE 8Eh

LOW_PASS, therefore one option (either NOTCH or

@ Note: This RTC code (8Eh) is the same as the one used with
LOW_PASS) can be used at any time.

ARGUMENTS

n bit coding of the only specified axis

fregy unsigned value specifying the notch filter frequency for
axisx
0£freq, £ 1650 Hz

Oy unsigned value specifying the notch filter quality factor
for axisx
g =1 ~25% bandwidth filter
gy =2 ~10% bandwidth filter

Mx4 cnC++ User'sGuidevl.1 561

Mx4 cnC++ Host-Based I nstruction Set

NOTCH cont.
DESCRIPTION
This command implements a notch filter at the controller output for the
specified axis.
- g BN
=0 5] A e 7l

Kalman
Filter
Sampling Period

wL PacTuaL

Mx4 Block Diagram with Notch Filter

The notch filter implements the transfer function:

S+wWe
G [— E—
(s Y-

where, w, = 2pf,, and f,, = notch frequency

The frequency and bandwidth of the notch is programmable.

@ Note:

SEE ALSO

5-62

By programming a notch frequency of O, the notch filter for the
specified axisis disabled.

none

Mx4 cnC++ Host-Based I nstruction Set

NOTCH cont.

EXAMPLE: RTC Programming Notch

The NOTCH RTC uses the coded values for both notch frequency and
notch quality factor, g. Table 4-1 shows these coded values. Use of the
index tableisonly necessary with RTCs.

Set anotch filter at 290 Hz with awide bandwidth for axis 3.
The following shows the DPR's byte stream:

3c2 8Eh ;command code

3c3 04h ;axis3

3c4 2Bh ;index to element 43 of freq table (290 Hz)
3¢5 0 ;index to wide bandwidth notch filter

Mx4 cnC++ User'sGuidevl.1 563

Mx4 cnC++ Host-Based I nstruction Set

5-64

NOTCH cont.
FREQ (Hz) FREQ Index
Disable notch 0
20 1
30 2
40 3
50 4
60 5
70 6
80 7
90 8
100 9
110 10
120 11
130 12
140 13
150 14
160 15
170 16
180 17
190 18
200 19
210 20
220 21
230 22
240 23
250 24
260 25
270 26
280 27
290 28
300 29
310 30
320 31
330 32
340 33
350 34
360 35
370 36
380 37
390 38
400 39

FREQ (Hz) FREQ Index
410 40
420 41
430 42
440 43
450 44
460 45
470 46
480 47
490 48
500 49
510 50
520 51
530 52
540 53
550 54
560 55
570 56
580 57
590 58
600 59
610 60
620 61
630 62
640 63
650 64
660 65
670 66
680 67
690 68
700 69
710 70
720 71
730 72
740 73
750 74
760 75
770 76
780 77
790 78
800 79

Notch Filter Frequency Index (continued on next page)

Mx4 cnC++ User'sGuidevl.1

NOTCH cont.

FREQ (Hz) FREQ Index
810 80
820 81
830 82
840 83
850 84
860 85
870 86
880 87
890 88
900 89
910 90
920 91
930 92
940 93
950 94
960 95
970 96
980 97
990 98
1000 99
1010 100
1020 101
1030 102
1040 103
1050 104
1060 105
1070 106
1080 107
1090 108
1100 109
1110 110
1120 111
1130 112
1140 113
1150 114
1160 115
1170 116
1180 117
1190 118
1200 119

Mx4 cnC++ Host-Based I nstruction Set

Notch Filter Frequency Index (continued on next page)

FREQ (Hz) FREQ Index
1210 120
1220 121
1230 122
1240 123
1250 124
1260 125
1270 126
1280 127
1290 128
1300 129
1310 130
1320 131
1330 132
1340 133
1350 134
1360 135
1370 136
1380 137
1390 138
1400 139
1410 140
1420 141
1430 142
1440 143
1450 144
1460 145
1470 146
1480 147
1490 148
1500 149
1510 150
1520 151
1530 152
1540 153
1550 154
1560 155
1570 156
1580 157
1590 158
1600 159

5-65

Mx4 cnC++ Host-Based I nstruction Set

5-66

NOTCH cont.
FREQ (Hz) FREQ Index
1610 160
1620 161
1630 162
1640 163
1650 164

Notch Filter Frequency Index

Quality Factor Quality Index
1 0
2 1

Notch Filter Quality Factor Index

Mx4 cnC++ Host-Based I nstruction Set

OFFSET

FUNCTION Amplifier Offset Cancellation
sYNTAX OFFSET(n)

RTC CODE 5Fh
ARGUMENTS
n asingle byte, bit coding the ONLY axisinvolved.

DESCRIPTION

This command minimizes the offset generated by the D/A converter.
Upon completion of offset tuning, an interrupt is generated to the host.
The condition is recorded in DPR interrupt status register location 009h.
The DPR status register location 00Ch will identify the axis responsible.
Bit 6 of DPR locations 3FEh, 7FEh is also set.

Note: OFFSET may be run with only one axis at atime. The status of
the remaining three axesis not affected by running OFFSET.

To run OFFSET, the following steps should be followed for the
corresponding axis:

1. Theaxisshould bein closed loop with optimal gains set.

2. Kjmust be non zero for the axis.

3. Theaxisshould be 'stopped’, with no motion commandsin
progress.

4. Start OFFSET with the specified axis.

5. Offset adjust is complete when a host interrupt is
generated.

SEE ALSO CTRL

Mx4 cnC++ User'sGuidevl.1 567

Mx4 cnC++ Host-Based I nstruction Set

OFFSET cont.

APPLICATION

5-68

Most servo amplifiers on the market present an input offset voltage
problem that is undesirable for an accurate positioning application.
Using OFFSET you may neutralize amplifier offset. To make this
happen, you must:

1. enable OFFSET for the axis whose offset is to be
neutralized.

2. use anon-zero K; gain that maintains stability and zeros
position error. (It is assumed that other control gains are
selected such that the system is stable.)

Position error is integrated via the integral channel to the point that
position error is forced to zero. In absence of amplifier offset, the DAC
voltage that would have achieved zero position error is zero. Any non-
zero DAC value is due to an error caused by amplifier offset voltage.
M X4 measures the voltage, reports satisfactory completion of OFFSET
command (generates an interrupt) and uses this measured voltage value
to neutralize offset throughout the entire control operation (until
machine is turned off). Due to the variable nature of amplifier offset,
offset calibration may be necessary any time the machine isturned on.

Command Sequence Example

MAXACC () ;make sure system can stop

CTRL () ;set gains

KILIMIT () ;put system in a position loop, make sure integral
;gainisnon-zero

OFFSET ()

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

OFFSET cont.

EXAMPLE

After verifying that OFFSET Steps 1-3 (see DESCRIPTION, above) have
been followed, do offset tuning for axis 3.

Thevalue of the RTC argument is:

n : o4h

5-69

Mx4 cnC++ Host-Based I nstruction Set

OUTGAIN

FUNCTION Output Loop Gain

syNTAX OUTGAIN(N, my, ..., my)

RTC CODE 81h
ARGUMENTS
n asingle byte, bit coding the axesinvolved.
m, asingle byte to specify the gains.
m=0 gan=1
m=1 gain=2
m=2 gain=4
m=3 gain=8
m=4 gan=16

DESCRIPTION

This command is used to set the gain for the output of the position
loops. Thedefault missetto O (gain=1).

Note: Please see block diagram on Page 4-19.

SEE ALSO CTRL

APPLICATION

In applications where the number of position encoder counts (per
mechanical revolution of the shaft) is low, lack of resolution in the
feedback path will manifest itself aslow gain. This may be compensated
for by aloop gain adjustment. In practice, this command may use an
argument greater than one if the encoder line number islessthan 1000.

570

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

OUTGAIN cont.

Command Sequence Example

MAXACC () ;make sure system can stop
CTRL () ;set gains

KILIMIT ()

OUTGAIN ()

EXAMPLE
Program output loop gains of eight for axis 3 and two for axis 4.
The values of the RTC arguments are:
= OCh

n
m = 03h
m = 0th

571

Mx4 cnC++ Host-Based I nstruction Set

OUTREL

FUNCTION Output Relay
syNTAX OUTREL(n, rly, ..., 1,)
RTC CODE 5%h
ARGUMENTS
n asingle byte, bit coding the axes involved.
rly asingle byte, bit mapping the outputs for axis x.

bit=0 active-LOW output
bit=1 active-HIGH output

bit 7 unused
bit 6 unused
bit 5 unused
bit 4 unused
bit 3 unused
bit 2 OUT?2 output for axis x general purpose output 3
bit 1 OUT1 output for axis x general purpose output 2
bit 0 OUTO output for axis x general purpose output 1

Note: The general purpose outputs (1-3) are mapped to axis 4 (i.e.,
n=08h).

DESCRIPTION

This command allows the status of all outputsto be set.

SEE ALSO DISABORT, ENABORT

572

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

OUTREL cont.

APPLICATION

This command can be used for general purpose logical output
operation.

Command Sequence Example

No preparation is required before running thisinstruction.

EXAMPLE

Generate an active-HIGH signal on general purpose output 1.
The arguments for thisinstruction will be:

n : 08h
fly : 01h

573

Mx4 cnC++ Host-Based I nstruction Set

574

PARREAD

FUNCTION Parameter Readback

sYNTAX PARREAD(m)

RTC CODE 5Eh
ARGUMENTS
m abyte which indicates the parameters to echo.
m=10h axis 1 position loop gain values
m=11h axis 2 position loop gain values
m=12h axis 3 position loop gain values
m=13h axis 4 position loop gain values
m=14h K; limit value
m=15h position loop output gain values
m=16h maximum acceleration
m=17h enabled interrupt
m=18h mode of operation
m=1%h following error and halt interrupt setpoint
m=1Ah following error interrupt setpoint
m=1Bh axis1and 2 position breakpoint interrupt setpoint
m=1Ch axis3and 4 position breakpoint interrupt setpoint
m=1Dh buffer breakpoint interrupt setpoint and contouring
block transfer rate
m=1Eh enabled limit switch interrupt
m=1Fh multi-turn base values
m=20h abort maximum acceleration
m=21h master/slave status
m=22h output relay status
m=23h logic state of inputs

PARREAD cont.

Mx4 cnC++ Host-Based I nstruction Set

Mx4 cnC++ User'sGuidevl.1

DESCRIPTION

Upon the execution of this command, Mx4 cnC++ echoes the
desired parameters to DPR locations 0B8h - OBFh. "m" is
echoed to DPR location OB7h if the parameters are ready in the
DPR. Parameters may take more than 5ms to echo back to the

DPR. Host can use the following algorithm:

gk wdhpE

DATA FORMAT

write mto DPR location 3C3h

write 0 to DPR location 0B7h

write RTC command code to DPR location 3C2h
poll DPR location OB7h until mis echoed

read the datafrom DPR location 0B8h - OBFh

For each type of parameter, DPR locations 0B8h - OBFh are interpreted
differently. The following shows the format for each type of parameter:

1 Position loop gains (m=10h - m=13h)

0B8h

0BSh

OBAh
0BBh
0BCh
0BDh
OBEh
0BFh

K; low byte
K; high byte
K, low byte
K, high byte
K:low byte
K;high byte
K4 low byte
Kq4 high byte

575

Mx4 cnC++ Host-Based I nstruction Set

PARREAD cont.

2. K limit (m=14h)

0Bgh K; limit for axis 1
0B%h K; limit for axis 2
OBAh K; limit for axis 3
0BBh K; limit for axis4
0BCh

: not used
0BFh

Note: O£ Kilimit£ 14
3. Position loop output gain (m=15h)

0B8h m specified gainsfor axis 1
0B%h m specified gainsfor axis 2
OBAh m specified gainsfor axis 3
0BBh m specified gainsfor axis 4
0BCh

: not used
OBFh

Note: OEmE£E4

4. Maximum acceleration (m=16h)

0B8h low byte acceleration for axis 1
0B%Sh high byte acceleration for axis 1
OBAh low byte acceleration for axis 2
0BBh high byte acceleration for axis 2
0BCh low byte acceleration for axis 3
0BDh high byte acceleration for axis 3
OBEh low byte acceleration for axis 4

O0BFh high byte acceleration for axis 4

576

PARREAD cont.

Mx4 cnC++ Host-Based I nstruction Set

Mx4 cnC++ User'sGuidevl.1

Enabled interrupt (m=17h)

0B8h
0BSh

0BAh
0BBh
0BCh

0BDh

0BFh

bit O codes buffer breakpoint interrupt

low nibble bit codes the following error and
halt interrupts, high nibble bit codes the
following error interrupts

low nibble bit codes the index pulse
interrupts, high nibble bit codes the position
breakpoint interrupts

low nibble bit codes the motion complete
interrupts, high nibble bit codes the probe
interrupts

low nibble bit codes the positive feedback
interrupts, high nibble bit codes the encoder
lost interrupts

not used

Mode of operation (m=18h)

0B8h
0BSh
0BAh
0BBh
0BCh

0BFh

low nibble bit codes the axes in axis move
operation

low nibble bit codes the axesin stop
operation

low nibble bit codes the axesin velmode
operation

low nibble bit codes the axesin contouring
operation

not used

577

Mx4 cnC++ Host-Based I nstruction Set

578

PARREAD cont.
.|

7. Following error and halt interrupt setpoint (m=19h)

0B8h low byte setpoint for axis 1
0B%h high byte setpoint for axis 1
OBAh low byte setpoint for axis 2
0BBh high byte setpoint for axis 2

0BCh low byte setpoint for axis 3
0BDh high byte setpoint for axis 3
OBEh low byte setpoint for axis 4

0BFh high byte setpoint for axis 4
8. Following error interrupt setpoint (m=1Ah)

0B8h low byte setpoint for axis 1
0B%h high byte setpoint for axis 1
OBAh low byte setpoint for axis 2
0BBh high byte setpoint for axis 2

0BCh low byte setpoint for axis 3
0BDh high byte setpoint for axis 3
OBEh low byte setpoint for axis 4

0BFh high byte setpoint for axis 4

9. Position breakpoint setpoint (m=1B for axes 1 and 2,

1Chfor axes 3 and 4)
0B8h low word low byte setpoint for axis 1 or 3
0B%h low word high byte setpoint for axis 1 or 3

OBAh high word low byte setpoint for axis 1 or 3
0BBh high word high byte setpoint for axis 1 or 3
0BCh low word low byte setpoint for axis2 or 4

0BDh low word high byte setpoint for axis 2 or 4
OBEh high word low byte setpoint for axis 2 or 4
0BFh high word high byte setpoint for axis 2 or 4

PARREAD cont.

Mx4 cnC++ Host-Based I nstruction Set

Mx4 cnC++ User'sGuidevl.1

10.

11

Buffer breakpoint interrupt setpoint and contouring
block transfer rate (m=1Dh)

0B8h buffer breakpoint interrupt setpoint
0B%h =00h : 2nd order contouring
=FFh cubic spline contouring
OBAh low byte, block transfer rate
0BBh high byte, block transfer rate
(for cubic spline only)
0BCh
: not used
0BFh

Enabled limit switch interrupt (m=1Eh)

(bit=1 indicates the corresponding interrupt is
enabled.)

0B8h echo m byte of ENABORT RTC for axis 1
0B%h byte bit-mapping the input enables for axis 1
OBAh echombyte of ENABORT RTC for axis 2
0BBh byte bit-mapping the input enables for axis 2
0BCh echo m byte of ENABORT RTC for axis 3
0BDh byte bit-mapping the input enables for axis 3
OBEh echo m byte of ENABORT RTC for axis4
0BFh byte bit-mapping the input enables for axis 4

Multi-turn base values (m=1Fh)

0B8h low byte base value for axis 1
0B%h high byte base value for axis 1
OBAh low byte base value for axis 2
0BBh high byte base value for axis 2

0BCh low byte base value for axis 3
0BDh high byte base value for axis 3
OBEh low byte base value for axis 4

0BFh high byte base value for axis 4

579

Mx4 cnC++ Host-Based I nstruction Set

PARREAD cont.

13. Abort maximum acceleration (m=20h)

0B8h low byte acceleration for axis 1
0B%h high byte acceleration for axis 1
OBAh low byte acceleration for axis 2
0BBh high byte acceleration for axis 2

0BCh low byte acceleration for axis 3
0BDh high byte acceleration for axis 3
OBEh low byte acceleration for axis 4

0BFh high byte acceleration for axis 4

14. Master/Slave status (m=21h)

0B8h =00h, configured as Master
=11h, configured as Slave
0B%h
: not used
0BFh

15. Output relay status (m=22h)

0B8h low nibble : bit codesOUTO
high nibble : bit codesOUT1
0B%h not used

OBAh bit 7 ;. OUT3(9)
bit 6 . OUT4(4)
bit54 : not used
bit 3 ;. OUT2(4)

bit2-0 : not used
0BBh not used

0BCh bit 7 : RL2
bit 6 : RL1
bit5-0 : not used

0BDh

: not used

O0BFh

5-80

Mx4 cnC++ Host-Based I nstruction Set

PARREAD cont.
.|

16. Logic state of inputs (m=23h)

0B8h not used
0B%h echo inp; byte of INPSTATE RTC
OBAh not used
0BBh echo inp, byte of INPSTATE RTC
0BCh not used

0BDh bit 7 . echobit 5 of inp3 byte of
INPSTATERTC

bit 6 . echobit 4 of inp3 byte of
INPSTATERTC

bit0O-5 : not used
OBEh not used
0Bfh not used

SEE ALSO none

APPLICATION

This command can be used as a diagnostic tool to monitor all system
parameters.

Command Sequence Example

No preparation is required before running thisinstruction.

EXAMPLE

Verify the gains settings for axis 2 by instructing Mx4 cnC++ to echo
the valuesto the DPR with a PARREAD command.

Thevalue of the RTC argument is:

m = 11h

Mx4 cnC++ User'sGuidevl.1 581

Mx4 cnC++ Host-Based I nstruction Set

POSBRK

FUNCTION Position Breakpoint Interrupt
syNTAX POSBRK(N, pos;, ... , p0S;)

RTC CODE 6Bh

ARGUMENTS

n asingle byte, bit coding the axesinvolved.
pos, 32 bit 2's complement position breakpoint value for axisx.

DESCRIPTION

This command enables the position breakpoint interrupt for the axes
specified. The position breakpoint interrupt is generated when the
actual position, for a specified axis, passes the programmed breakpoint.
The DPR interrupt status register locations 000h and 004h record the
occurrence and source of this interrupt. Bit 1 of DPR locations 3FEh,
7EFh isalso set.

Note: The position breakpoint is calculated as an absolute distance
from the present position (position at the moment at which the
POSBRK RTC is interpreted) to the position breakpoint value
entered. The breakpoint interrupt is set when the axis in
guestion travels (in either direction) a distance equal to the
calculated absol ute distance.

Note: Position breakpoint interrupt isautomatically disabled after the
breakpoint interrupt is generated. To activate this interrupt
again, the host must issue a new POSBRK command.

Note:. HOME and HOMESFT commands will automatically disable
the position breakpoint interrupt. The user isresponsible to re-
enable the interrupt again.

SEE ALSO DISABL, HOME, HOMESFT

582

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

POSBRK cont.

APPLICATION

This instruction may be used in applications such as robotics, indexing
machine tools, etc. The CPU must be notified that the system has
passed an intermediate position. Based on this interrupt, the CPU will
execute atask. For example, in a robotics painting application, the paint
mixture may have to change based on the robot's arm location.

Command Sequence Example

MAXACC () ;make sure system can stop
CTRL () ;set gains

KILIMIT ()

OUTGAIN ()

EXAMPLE

Enable a breakpoint interrupt with avalue of 60,000 counts for axis 1 and
500,000 for axis 2.

The values of the RTC arguments are:
n : 03h

pos; : OOOOEAGBON
pos, : 0007A120h

583

Mx4 cnC++ Host-Based I nstruction Set

584

POSFEED

FUNCTION Enable Positive Feedback Interrupt

sYNTAX POSFEED(n)

RTC CODE 5Bh
ARGUMENTS
n asingle byte, bit coding the axesinvolved.

DESCRIPTION

This command enables the positive feedback loop interrupt for the
specified axes. Positive feedback interrupt is generated if the following
conditions are met (for the axis in question):

1. following error is> 2000 counts
2. oneof the possible error cases listed below is met
3. theabove two conditions hold for 0.3 seconds

Possible Error Cases:

A. command position values increasing, actual position
values decreasing

B. command position values decreasing, actual position
valuesincreasing

Note: Thefollowing cases are allowed due to possible friction-related
motion characteristics:

A. command position values increasing, actual position
values unchanged

B. command position values decreasing, actual position
valuesincreasing

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

POSFEED cont.

The DPR interrupt status locations 009h and OOAh record the
occurrence and source of this interrupt. Bit 6 of DPR locations 3FEh,
7EFhisalso set.

SEE ALSO DISABL2
APPLICATION

A necessary diagnostic feature for all servo control applications.

Command Sequence Example

No preparation is required before running thisinstruction.

EXAMPLE

Enable the positive feedback loop interrupt for all four axes.
Thevalue of the RTC argument is:

n : OFh

585

Mx4 cnC++ Host-Based I nstruction Set

5-86

PRBINT

FUNCTION General Purpose Interrupt
sYNTAX PRBINT(n, m)

RTC CODE 6Ch
ARGUMENTS
n asingle byte, bit coding the \PRx echoed back to the DPR.
m byte which indicatesthe ONLY source of theinterrupt signal.
m=1 : from\PRO
m=2 : from\PR1

DESCRIPTION

Upon the execution of this command, the servo control card will search
for the first \PRx pulse edge. The pulse edge results in the generation of
an interrupt, stop ALL the axes and registration of the actual position
for al axes in DPR location 0A7h-0B6h. (The hand shaking bytes are
0C8h and 0DOh for Mx4 cnC++ and host respectively.) An interrupt is
generated after an axis is stopped. The DPR interrupt status register
locations 000h and 006h record the occurrence and source (echo of
values n and m) of this interrupt. Bit 1 of DPR locations 3FEh, 7EFh is
also set.

Note: Only one general purpose probe interrupt can generate an
interrupt at any given time. The PRBINT command enables the
probe interrupt specified and automatically disables the
previous one (if any).

Note: General purpose probe interrupt and index pulse CAN BE
ENABLED simultaneously.

Note: Abort maximum accel eration must be set non-zero.

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

PRBINT cont.

SEE ALSO DISABL, ABORTACC

APPLICATION

This instruction is useful in probing applications. Since PRBINT
registers all positions when an interrupt occurs (falling pulse edge is
detected) and brings all axes to a stop, it can be used in accurate
recording of surface dimensions by a probe.

Command Sequence Example

ABORTACC () ;make sure that system can be stopped
CTRL () ;these instructions enabl e system to stop motion
KILIMIT ()

PRBINT ()
EXAMPLE

Enable the \PR2 probe interrupt.
The values of the RTC arguments are:

n : 02h
m : 02h

5-87

Mx4 cnC++ Host-Based I nstruction Set

5-88

RESET

FUNCTION Reset MX4
sYNTAX RESET(AAh, AAh)

RTC CODE 72h

ARGUMENTS
AAh reset signature byte.
DESCRIPTION

This command brings the servo controller card back to power-up state.
Upon Mx4 cnC++'s reset completion, a host interrupt is generated via
bit 4 of DPR locations 3FEh, 7FEh.

SEE ALSO none

APPLICATION

From time to time all systems may have to be software reset to allow for
aninitialization.

Command Sequence Example

No preparation is required before running thisinstruction.

EXAMPLE

Reset the Mx4 cnC++ controller card.

The arguments of RESET are AAh, AAh (2 bytes).

Mx4 cnC++ Host-Based I nstruction Set

START

FUNCTION Start Contouring Motion

sYNTAX START(n)

RTC CODE 6Dh

ARGUMENTS

n asingle byte, bit coding the axesinvolved.

DESCRIPTION

This command starts the motion (simultaneously) for the specified axes
included in 2nd order and cubic spline contouring. START applies to
contouring only.

Note: START RTCwill beignored if contouring isin progress.

SEE ALSO STOP, VECCHG

APPLICATION

This command must be used in all 2nd order and ring buffer cubic spline
contouring applications to start contouring with selected axes.

For 2nd Order Contouring Only

This command can be overwritten by VECCHG which redefines the
axesinvolved in the contouring process. For example, START starts
the contouring of axes 1, 3, and 4. If in the course of contouring, a
VECCHG isreceived (with argument) specifying axes 1, 2, and 3, the
new contouring pointsin the ring buffer will be used for the newly
defined axes. Please also see VECCHG.

Mx4 cnC++ User'sGuidevl.1 5-89

Mx4 cnC++ Host-Based I nstruction Set

START cont.

Command Sequence Example
;load ring buffer with positions and velocities

MAXACC () ;make sure system can stop

CTRL () ;set gains
KILIMIT ()
BTRATE () ;set block transfer rate
BBINT () ;set the breakpoint in the ring buffer
START () ;Start contouring
EXAMPLE

Start contouring motion in axes 2 and 3.
The values of the RTC argument is:

n : 06h

590

Mx4 cnC++ User'sGuidevl.1

STOP

Mx4 cnC++ Host-Based I nstruction Set

FUNCTION Stop Motion
sYNTAX STOP(n)
RTC CODE 6Eh
ARGUMENTS
n asingle byte, bit coding the axesinvolved.

DESCRIPTION

This command stops the motion of all specified axes simultaneously. To
stop motion, the servo control card uses the programmed values for
maximum acceleration / deceleration. Upon receipt of this command the
servo controller aborts the current command. The host is responsible
for clearing the ring buffer of any remaining commands if the axis(es)
stopped wasinvolved in contouring motion.

Note: An emergency stop signal, ESTOP/, will perform a hardware
stop. Thisis an open collector input signal which is active low
and is shared between all of the controller cards.

Note: STOP command will be ignored if the maximum acceleration /
deceleration is equal to zero (e.g. MAXACC not issued).

If an axis is halting to a stop via a previously executed STOP RTC or
active ESTOP input, MX4 will ignore any motion commands (AXMOVE,
START or VELMODE) and will report an "RTC Command Ignored"
interrupt to the host if such acommand is received by Mx4 cnC++ for an
axis that is not yet halted. The above motion commands should not be
sent to Mx4 cnC++ for a halting axis until the axis motion has come to a
stop.

5901

Mx4 cnC++ Host-Based I nstruction Set

STOP

cont.

SEE ALSO AXMOVE, MAXACC, START

APPLICATION

EXAMPLE

592

For all applications involving bringing speed to zero (0) in the quickest
possible manner.

Command Sequence Example

MAXACC () ;make sure system can stop
CTRL () ;set gains

KILIMIT ()
BTRATE () ;set block transfer
BBINT () ;set the breakpoint in the ring buffer

STOP () ;stop the motion
;upon compl etion of stop (command) trajectory
;Mx4 cnC++ generatesmotion compl ete interrupt

Bring the motion of axes 1 and 4 to a halt.
Thevalue of the RTC argument is:

n : 0%h

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Host-Based I nstruction Set

SYNC

FUNCTION Master / Slave Select
sYNTAX SYNC(m)

RTC CODE 87h
ARGUMENTS
m abyte that selects the Master / Slave status of the Mx4 cnC++
board.
m=0 : Mx4cnC++ isconfigured asaMaster
mO0 : Mx4cnC++isconfigured asaSlave
DESCRIPTION

If more than one Mx4 cnC++ card isto be used in a system and card-to-
card synchronization is required, the SYNC RTC should be used. The
SYNC RTC dlows multiple Mx4 cnC++ cards to operate in
synchronization within a system by specifying a single Master and the
remaining card(s) as Slaves. SYNC establishes the Mx4 cnC++ card as
either a Master or Slave in a multiple card system. If only one (1) Mx4
cnC++ isused in a host computer system, that Mx4 cnC++ must be
configured as a Master.

Note: Mx4 cnC++ powers-up and resetsto adefault Master status.

In addition to configuring the Mx4 cnC++ cards viathe SYNC RTC (for
multiple card systems), a cable jumper must be included on the J5
connector of each of the boards. The cable must be wired such that the
MASTER signal from the Master Mx4 cnC++ connects to the SLAVE
signal of each of the Slave Mx4 cnC++(s).

5-93

Mx4 cnC++ Host-Based I nstruction Set

594

SYNC cont.
.|

SEE ALSO none

APPLICATION

This command is used in applications where tight coordination of more
than four axes is required. This command essentially slaves several
MX4 cnC++ MB-IO cards to a single master MX4 cnC++ MB-IO.
Applications involving many axes contouring may benefit from this
command.

Command Sequence Example

This command must be executed immediately after the initialization.
Please remember that the default value for m is zero (i.e., the card is
initialized asa Master).

EXAMPLE

Toinitializeacard as Slave

m : 01h

Mx4 cnC++ Host-Based I nstruction Set

VECCHG

FUNCTION 2nd Order Contouring Vector Change

sYNTAX VECCHG(n, m)

RTC CODE 6Fh
ARGUMENTS
n asingle byte, bit coding the axesinvolved.
m 8 hit positive value which represents the buffer position (in 8

byte offsets from the start of the buffer) where the number of
axes involved in contouring must be changed to include only
those axes coded by n.

DESCRIPTION

Upon the execution of this command, the 2nd order contouring task
assumes a new set of axes at the programmed pointer location.

Note: 3 buffer levels are used to implement thisinstruction.

SEE ALSO START

APPLICATION

See START.

Mx4 cnC++ User'sGuidevl.1 595

Mx4 cnC++ Host-Based I nstruction Set

5-96

VECCHG cont.

Command Sequence Example

MAXACC () ;make sure system can stop

CTRL () ;set gains

KILIMIT ()

BTRATE () ;set the block transfer rate

BBINT () ;set the buffer breakpoint interrupt

START () ;start contouring for a selected number of axes

;based on buffer breakpoint interrupt transfer more

. ;points

VECCHG () ;use pointsin ring buffer for anew set of axes
EXAMPLE

Begin contouring in axes 1, 2, and 3 after the 23rd segment move
command of the ring buffer.

The values of the RTC arguments are:

n : 07h
m : 17h

Mx4 cnC++ Host-Based I nstruction Set

VELMODE

FUNCTION Velocity Mode
synTax VELMODE(N, vy, ..., vel,)

RTC CODE 70h

ARGUMENTS

n asingle byte, bit coding the axesinvolved.
vel, 32 hit 2's complement velocity value for axis x.

Note: Velocity is represented by a 27 bit 2's complement number
which is sign extended to 32 bits. Velocity is partitioned as 16
bitsinteger, 16 bitsfraction.

DESCRIPTION

Upon the execution of this command a velocity loop for the specified
axes will be closed. The velocity loop uses the same gains as those
specified using the control law command. Velocity mode uses the
maximum acceleration / deceleration value to accelerate or decelerate to
the desired velocity.

Note: VELMODE command will be ignored if the maximum
acceleration / deceleration is equal to zero (e.g. MAXACC not
issued).

Note: In order to obtain units of encoder edge counts/ 200nsec, the
host must use adivision factor as specified:

Mx4 cnC++ 816
VECTOR4 installed 840
SEE ALSO MAXACC

Mx4 cnC++ User'sGuidevl.1 597

Mx4 cnC++ Host-Based I nstruction Set

5-98

VELMODE cont.

APPLICATIONS

This instruction is useful in al general purpose velocity control
applications. Please remember that athough VELMODE primarily
regulates speed, the outer loop is still position. This means that while
regulating speed, M X4 continually triesto zero the position error.

Command Sequence Example

MAXACC () ;make sure system can stop
CTRL () ;set gains
KILIMIT ()

VELMODE ()

EXAMPLE

Engage axis 2 in velocity mode with avelocity of 3.71 counts/200nsec.
The values of the RTC arguments are:

n : 02h
vel, : 0003B5C3h

O Mx4 cnC++ Host-Based
Programming

M x4 cnC++ - Host Communication

The host communicates with the PC/AT Mx4 cnC++ through the host computer
ISA bus. The communication takes place across a Dual Port RAM (DPR) buffer
on the Mx4 cnC++ card (see Fig. 6-1). Through this buffer, the host may read
system state variables such as position and velocity, interrupt internal Mx4
cnC++ parameters, write real time instructions to the Mx4 cnC++ card, monitor
the interrupt status of Mx4 cnC++ and much more.

Host /I—
Dual Port Mx4 cnC++
Computer \— RAM Algorithms

ISA Bus

Mx4 cnC++

Fig. 6-1: Host - Mx4 cnC++ Dual Port RAM Interface

Mx4 cnC++ User’'s Guidevl.1l 6-1

Mx4 cnC++ Host-Based Programming

Host - Mx4 cnC++ Interface

The host communicates with Mx4 cnC++ via a 2048 byte Dua Port RAM (DPR _.
This DPR is functionally split into seven blocks which are described below in

Table 6-1.

DPR
BLOCK

ADDRESS RANGE

DESCRIPTION

Status
Registers

Hardware
Signature

Parameter
Updates

Signature
Window

2nd Order
Contouring
Ring Buffer

Cubic Spline
Contouring
Ring Buffer

RTC
Window

Interrupt
Registers

000h - 08Dh

08Eh - 093h

094- 114h

115h - 11Fh

120h - 3C1h

400h - 7F1h

3FCh - 3FFh
TFEh, 7FFh

3FCh - 7FFh

The status register block includes Mx4 cnC++ card
status codes as well as interrupt source
information.

These bytes code, in ASCII, the hardware
platform (PC/AT, Multibus or VME), hardware
options (with /O or standard configuration), and
the board's revision number.

System parameters such as actual position,
following error and actual velocity are available
for the host to read in this block.

The Mx4 cnC++ card writes a signature using
ASCII codes to the signature window at power-up.
The host may check for this signature to verify
installation of a Mx4 cnC++ card.

This block of the DPR is reserved for 2nd order
contouring motion or coordinated move data
points. The host downloads data to Mx4 cnC++
viathis "ring buffer".

This block of the DPR is reserved for cubic spline
contouring motion data points. The host
downloads data to Mx4 cnC++ viathis “ring
buffer”.

This window in the DPR serves as a buffer for the
host to send RTCs to Mx4 cnC++.

This block is used in the setting and re-setting of
hardware interrupts to the host.

Table6-1: Mx4 cnC++ Dual Port RAM Blocks

6-2

Mx4 cnC++ User's Guidevl.1

Mx4 cnC++ Host-Based Programming

Communication Protocols

In order to maintain a healthy communication interface between the host and
Mx4 cnC++, some simple communication protocols must be adhered to by the
host.

Each location in the DPR is labeled (see Mx4 cnC++ Dual Port RAM
Organization) with two read/write access codes. One code for the host, one for
Mx4 cnC++. The access codes are:

RO : readonly access
WO : writeonly access
RW : read and write access

These "restrictions" are enforced only by convention in the host and Mx4 cnC++
software. They are included to help the user understand how the various
locations in the DPR are used by both the host and Mx4 cnC++.

Much of the datain the DPR that the host and Mx4 cnC++ must read or write is
multi-byte data (such as 32-bit actual position values) and thus requires multi-
address accesses to the DPR. In order to ensure that multi-byte values are not
corrupted by unsynchronized accesses, many DPR 'windows' are protected via
‘access bytes. See Fig. 6-3.

6-3

Mx4 cnC++ Host-Based Programming

6-4

| Mx4 cnC++ Access Byte l_
—| Host Access Byte |

Mx4 cnC++
Dual Port RAM
"Window"

Fig.6-3: Mx4cnC++ Dual Port RAM Access Bytes

Each 'window' includes both a host access byte and a Mx4 cnC++ access byte
which are used to control access to the window. A more detailed explanation of
how to use these bytes is offered in the Mx4 cnC++ Dual Port RAM
Organization section and will be discussed further in Communication Protocols
Revisited.

M x4 cnC++ Dual Port RAM Organization

Mx4 cnC++ Host-Based Programming

The 2 Kbyte DPR is partitioned as follows in Table 6. (The names given to
individual bytes and groups of dataare for reference only.)

Status Registers (locations 000h - 08Dh)

NAME

ADDRESS

ACCESS

psp | HosT

DESCRIPTION

Mx4 cnC++ User's Guidevl.1

The status register bytes indicate the interrupt status of Mx4 cnC++. Mx4 cnC++ updates
or writes to these locations in an OR fashion. Thus, Mx4 cnC++ does not reset interrupt
status bits. The host, after reading or recognizing an interrupt status register must reset
bits at its own discretion.

DSPSTAT1

000h

RW RwW

Mx4 cnC++ status register for
interrupts. Polled by the host to
determine internal Mx4 cnC++
status.
bit 0: following error halt and
interrupt
bit 1: following error interrupt
bit 2: index pulse interrupt
bit 3: position breakpoint
interrupt
bit 4: motion complete
interrupt
bit 5: probe signal interrupt
bit 6: conflicting commands
(ignore the new motion-
related command and
send an interrupt)
bit 7. RTC command is ignored
because STOPisin
progress

Table 6: Dual Port RAM Status Registers (continued on next page)

6-5

Mx4 cnC++ Host-Based Programming

6-6

ACCESS
NAME ADDRESS DSP HOST DESCRIPTION
DSPSTAT2 009h RW RW Mx4 cnC++ status register for

register for to determine internal
Mx4 cnC++. status.
bit 0: positive feedback
interrupt
bit 1: encoder lost interrupt
bit 2: offset cancel finished
bit 3: inputs (limit switch/fault)
interrupt
bits 4-7: not used

The INTAXIS bytes code the source(s) of the interrupt(s) by setting a bit(s) (unless

otherwise noted):

bit 0: axis 1
bit 1: axis 2
bit 2: axis 3
bit 3: axis 4
bits 4-7: not used
INTAXIS 001h RW RW source of following error and
halt interrupt
INTAXIS 002h RwW RW source of following error
interrupt
INTAXIS 003h RwW RW source of index pulse interrupt
INTAXIS 004h RwW RW source of position breakpoint
interrupt
INTAXIS 005h RW RW source of motion complete
interrupt
INTAXIS 006h RwW RW source of probe signal interrupt
low nibble : echom
high nibble : echon
INTAXIS 007h RwW RW source of conflicting commands
interrupt
INTAXIS 008h RwW RW source of RTC command ignored
because STOP isin progress
INTAXIS 00Ah RW RW source of positive feedback
interrupt
INTAXIS 00Bh RwW RW source of encoder loss interrupt
INTAXIS 00Ch RW RW source of offset cancel finished
INTAXIS 00Dh RwW RW source of limit switch/fault
interrupt

Mx4 cnC++ User's Guidevl.1

Mx4 cnC++ Host-Based Programming

| reserved

| 00Eh-08Dh |

| unused locations

Table 6 Cont.: Dual Port RAM Status Registers

Hardware Signature Window (locations O8Eh - 093h)

NAME

ADDRESS

ACCESS

DSP

HOST

DESCRIPTION

SIGNATURE

08Eh

WO

RO

Bus designator byte:
ASCII "P* : PCIAT
ASCII "M" : Multibus
ASCII "V" : VME

SIGNATURE

08Fh

WO

RO

Hardware option byte:
ASCII "I" : 1O

integer 0 : standard
configuration

SIGNATURE

090h

WO

RO

Revision byte:

ASCII "A" : revision A
ASCII "B" : revisionB
etc.

SIGNATURE

091h - 093h

WO

RO

reserved for future options ...

currently unused

Fig. 7: Dua Port RAM Hardware Signature Window

6-7

Mx4 cnC++ Host-Based Programming

6-8

Parameter Updates (locations 094h - 114h)

NAME

ADDRESS

ACCESS

DSP

HOST

DESCRIPTION

LIMSW

094h

wo

RO

limit switch O, 1 status (real time) A set
bit indicates active:

bit0: axis1+O.T.
bit 1: axis2 + O.T.
bit 2: axis3+ O.T.
bit 3: axis4+ O.T.
bit4: axis1-0O.T.
bit5: axis2-O.T.
bit 6: axis3-O.T.
bit7: axis4-O.T.

reserved

095h

unused location

FAULT

096h

wo

RO

fault status (real time). A set bit
indicates active:

bit 0-3: not used
bit 4: Gen. Purpose Input 4
bit 5: Gen. Purpose Input 5
bits 6-7: not used

MFRAC1

097h - 098h

woO

RO

axis 1 multi-turn fraction LSB, MSB (16
bit two's complement)

MTURN1

099h - 09Ah

wo

RO

axis 1 multi-turn#turnsLSB, MSB (16
but two's complement)

MFRAC2

09Bh - 09Ch

WO

RO

axis 2 multi-turn fraction LSB, MSB (16
bit two's complement)

MTURN2

09Dh - 09Eh

wo

RO

axis 2 multi-turn# turns LSB, MSB (16
but two's complement)

MFRAC3

09Fh -0A0h

wo

RO

axis3 multi-turn fraction LSB, MSB (16
bit two's complement)

MTURN3

0A1lh-0A2h

wo

RO

axis 3 multi-turn # turns LSB, MSB (16
but two's complement)

MFRAC4

0A3h - 0A4h

wo

RO

axis4 multi-turn fraction LSB, MSB (16
bit two's complement)

MTURN4

0A5h - 0A6h

wo

RO

axis4 multi-turn # turnsLSB, MSB (16
but two's complement)

PRB10-3

0A7h - 0AAh

woO

RO

axis 1 probeinterrupt position
LSB,...,MSB (32 bit two's complement)

PRB20-3

OABh - OAEh

wo

RO

axis 2 probeinterrupt position
LSB,...,MSB (32 bit two's complement)

Table 8: Dual Port RAM Parameter Updates (cont.

on next page)

Mx4 cnC++ User's Guidevl.1

Mx4 cnC++ Host-Based Programming

PRB30-3 OAFh - 0B2h \Ye) RO axis 3 probeinterrupt position
LSB,...,MSB (32 bit two's complement)
PRB40-3 0B3h - 0B6h wo RO axis 4 probe interrupt position
LSB,..,.MSB
(32 bit two's complement)
PARACC 0B7h WO RW Parameter readback window m echo
PARRDBK 0B8h - 0BFh wo RO Parameter readback window (see
PARREAD RTC description)
reserved 0COh - 0C2h - - unused locations

e M4ACC bytes are used as access flags. When the Mx4 cnC++ needs to access a parameter update window, it
sets the corresponding M4ACC byte to 01h. The host must test these flags to see if values can be written to or
read from the parameter window in question.

M4ACC=00h Mx4cnC++ is not using window. Host may set corresponding
HOSTACC=01h and may access window.
M4ACC=01h Mx4cnC++isusing window. Host must wait until thisbyteis cleared
before accessing the window in question.
M4ACC 0C3h WO RO Mx4 cnC++ isusing 0D3h - OE2h
window
M4ACC 0C4h WO RO Mx4 cnC++ isusing OE3h - OF2h
window
M4ACC 0C5h WO RO Mx4 cnC++ isusing OF3h - 102h
window
M4ACC 0C6h WO RO Mx4 cnC++ isusing 103h - 112h
window
M4ACC 0C7h WO RO Mx4 cnC++ isusing 113h - 114h
window
M4ACC 0C8h WO RO Mx4 cnC++ isusing 0A7h - 0B6h
window
M4ACC 0C%h WO RO Mx4 cnC++ isusing 097h - 0A6h
window
M4ACC 0CAh WO RO unused location

he HOSTACC bytes are used as access flags. When the host needs to access a parameter update window, it sets
the corresponding HOSTACC byteto 01h. The Mx4cnC++ will test these flagsto seeif values can be written
to or read from the parameter window in question.

HOSTACC=00h : Host isnot using window. Mx4cnC++ may set corresponding M4ACC=01h
and may access window.
HOSTACC=01h : Hostisusing window. Mx4cnC++ must wait until thisbyteiscleared

before accessing the window in question.

Table 8 cont.: Dual Port RAM Parameter Updates (cont. on next page)

69

Mx4 cnC++ Host-Based Programming

6-10

HOSTACC 0CBh RO RW host isusing 0D3h - OE2h window
HOSTACC 0CCh RO RW host is using OE3h - OF2h window

HOSTACC 0CDh RO RW host isusing 0F3h - 102h window

HOSTACC 0CEh RO RW host is using 103h - 112h window

HOSTACC OCFh RO RW host isusing 113h - 114h window

HOSTACC 0DOh RO RW host isusing 0A7h - 0B6h window
HOSTACC 0D1h RO RW host isusing 097h - 0A6h window
HOSTACC 0D2h RO RW unused location

following error data.

Bee Chapter 4'sModes of Operation, State Variables for details concerning the format of position, velocity and

POS10-3 0D3h - 0D6h WO RO axis 1 position LSB,...,MSB (32 bit
two's compl ete)

POS20-3 0D7h - ODAh WO RO axis 2 position LSB,...,MSB (32 bit
two's complete)

POS30-3 O0DBh - ODEh WO RO axis 3 position LSB,...,MSB (32 bit
two's complete)

POS40-3 ODFh - OE2h WO RO axis4 position LSB,...,MSB (32 bit

two's complete)

n order to obtain units of encoder edge counts/samplin
(as specified in the VELMODE RTC description).

g period for velocity, the host must use adivision factor

VEL10-3 OE3h - OE6h WO RO axis1velocity LSB,...,MSB (32 bit
two's complement)

VEL20-3 OE7h - OEAh WO RO axis2 velocity LSB,...,MSB (32 bit
two's complement)

VEL30-3 OEBh - OEEh \\e) RO axis 3 velocity LSB,...,MSB (32 bit
two's complement)

VELA40-3 OEFh - OF2h \We] RO axis4 velocity LSB,...,MSB (32 bit
two's complement)

FE10-3 OF3h - OF6h wo RO axis 1 following error LSB,...MSB (32

bit two's complement)

Table 8 cont.: Dual Port RAM Parameter Updates (cont. on next page)

Mx4 cnC++ User's Guidevl.1

Mx4 cnC++ Host-Based Programming

FE20-3

OF7h - OFAh

WO

RO

axis 2 following error LSB,...MSB (32 bit
two's complement)

FE30-3

OFBh - OFEh

WO

RO

axis3following error LSB,...MSB (32 bit
two's complement)

FE40-3

OFFh - 102h

WO

RO

axis4 following error LSB,...MSB (32 bit
two's complement)

IND10-3

103h - 106h

WO

RO

axis 1index position LSB,...MSB (32 bit
two's complement)

IND20-3

107h - 10Ah

WO

RO

axis 2 index position LSB,...M SB (32 bit
two's complement)

IND30-3

10Bh - 10Eh

WO

RO

axis 3index position LSB,...MSB (32 bit
two's complement)

IND40-3

10Fh - 112h

wO

RO

axis4 index position LSB,...MSB (32 bit
two's complement)

ENCSTAT

MARKER

113h

WO

RO

Status of encoders. A set bit indicatesa
failure of the corresponding hardware
item:

bit 0: axis 1 encoder

bit 1: axis2 encoder

bit 2: axis 3 encoder

bit 3: axis4 encoder

Real time marker reporting (aset bit
indicatesindex pulse)

bit4 : axis1index pulse
bit5 : axis2index pulse
bit 6 : axis3index pulse
bit 7 : axis4index pulse

SERVOCHK

114h

RW

RO

Servo check byte. Bit Oissetif Mx4
cnC++ DSPinternal stack is overflowed.
Then a system reset may be necessary.

Table 8 Cont.: Dua Port RAM Parameter Updates

6-11

Mx4 cnC++ Host-Based Programming

Signature Window (locations 115h - 11Fh)

ACCESS
NAME ADDRESS psp | HosT DESCRIPTION

The SIGNATURE bytes contain the ASCI| code controller card signature. The signature

will be present if the card is operation correctly.

SIGNATURE 115h WO RO ASCII "M"

SIGNATURE 116h WO RO ASCII "X"

SIGNATURE 117h WO RO ASCII "4"

SIGNATURE 118h \Wie} RO integer part of dspl software
version number

SIGNATURE 119h e} RO decimal part of dspl software
version number

SIGNATURE 11Ah WO RO ASCII "+"

SIGNATURE 11Bh e} RO integer part of dsp2 software
version number

SIGNATURE 11Ch e} RO decimal part of dsp2 software
version number

SIGNATURE 11Dh WO RO ASCII "+"

SIGNATURE 11Eh WO RO integer part of VECTOR4
version number

SIGNATURE 11Fh WO RO decimal part of VECTOR4
version number

If VECTORA4 is not installed, DSP location 11Dh - 11Fh will be zero.

Table9: Dual Port RAM Signature Window

6-12

Mx4 cnC++ User's Guidevl.1

Mx4 cnC++ Host-Based Programming

2nd Order Contouring Ring Buffer
(locations 120h - 3C1h)

NAME

ADDRESS

ACCESS

DSP HOST

DESCRIPTION

RINGBUF

120h - 3BFh

RO woO

672 byte ring buffer which
contains host contouring
commands (4 bytes position, 4
bytes velocity) to be processed
by the DSP.. The length of all
messages deposited by the host in
this buffer must be a multiple of
8 bytes.

INPTR

3COh

RO RW

Pointer to the next free location
in RINGBUF that the host will
write to (expressed as an offset
from the start of the buffer in
multiples of 8 bytes).

OUTPTR

3C1h

RW RO

Pointer to the next location in
RINGBUF that Mx4 cnC++ will
read from (expressed as an offset
from the start of the buffer in
multiples of 8 bytes).

Table 10: Dual Port RAM Ring Buffer
Real Time Command (RTC) (locations 3C2h - 3FBh)

NAME

ADDRESS

ACCESS

DSP HOST

DESCRIPTION

RTC

3C2h

RW RW

Real time command byte. If thisbyteis
non-zero, Mx4 cnC++ will interpret it as
acommand and execute it, using the
following locations asits arguments.
When execution is complete and Mx4
cnC++ isready for the next command,
RTC will be set to zero.

ARGMNTS

3C3h-3FBh

RO wO

57 bytes of argument storage area. The
usage of this areadepends on the real
time command to be executed. The host
must set up the argument area correctly
before writing acommand code to RTC,
to ensure that Mx4 cnC++ reads the
arguments properly.

Table11: Dua Port RAM Rea Time Command (RTC)

6-13

Mx4 cnC++ Host-Based Programming

6-14

Interrupt Registers (locations 3FCh - 3FFh, 7FEh, 7FFh)

NAME ADDRESS

ACCESS

DSP HOST

DESCRIPTION

MINTACC 3FCh

RW RO

A Mx4 cnC++ access flag byte.
When Mx4 cnC++ needs to
access location 3FEh, 7FEh or
the status registers window (000h
- 08Dh), it sets this byte equal to
01h. The host must test this flag
to see if values can be written to
or read from the window.

(due to its single byte status). All

Read accesses to location 3FEh and 7FEh do not require use of the MINTACC access byte

write accesses to 3FEh must use the MINTACC byte,

however. (See Handling Mx4 cnC++ Software/Hardwar

e Interrupts)

HINTACC 3FDh

RO RwW

A host access flag byte. When
the host needs to access location
3FEh, 7FEh or the status
registers window (00Ch - 08Dh),
it sets this byte equal to Ol1h.
Mx4 cnC++ must test this flag to
see if values can be written to or
read from the window.

HOSTINT1 3FEh

RW

RW

HOSTINT1 is a duplicate of
HOSTINT2 (7FEh). Host
hardware interrupt setting and
resetting is done viaHOSTINT2
(7FEh).
bit O: interrupt source is buffer
breakpoint
bit 1: interrupt related to
DSPSTAT1 register
bit 2: ESTOP is detected
bit 3: vector change buffer is
overflown
bit 4: reset finished
bit 5: datarun out in ring buffer
(abgvel]>0)
bit 6: interrupt related to
DSPSTAT2 register
bit 7: unused

reserved 3FFh

reserved

Table 12: Dual Port RAM Interrupt Registers (continued on next page)

Mx4 cnC++ User's Guidevl.1

Mx4 cnC++ Host-Based Programming

HOSTINT2

7FEh

RW

RW

When Mx4 cnC++ sets a bit(s) in
this location, a host “hardware'
interrupt will be generated. The
interrupt remains in force until
the host accesses this location.
bit O: interrupt source is buffer
breakpoint
bit 1: interrupt related to
DSPSTAT1 register
bit 2: ESTOP is detected
bit 3: vector change buffer is
overflown
bit 4: reset finished
bit 5: datarun out in ring buffer
(abq vel]>0)
bit 6: interrupt related to
DSPSTAT2 register
bit 7: unused

DSPINT

7FFh

RW

woO

When the lost sets a bit(s) in this
location, a Mx4 cnC++ interrupt
will be generated. The interrupt
remains in force until Mx4
cnC++ accesses this location.
This register currently not used.

Table 12 Cont.: Dual Port RAM Interrupt Registers

Cubic Spline Contouring Ring Buffer

6-15

Mx4 cnC++ Host-Based Programming

6-16

(locations 400h -7F1h)

NAME ADDRESS

ACCESS

DSP

HOST

DESCRIPTION

RINGBUF 400h - 7EF

RO

woO

672 byte ring buffer which
contains host cubic spline
contouring commands (4 bytes
position, 4 bytes velocity) to be
processed by the DSP. The
length of all messages deposited
by the host in this buffer must be
amultiple of 8 bytes.

INPTR 7F0

RO

RW

Pointer to the next free location
in INGBUF that the host will
write to (expressed as an offset
from the start of the buffer in
multiples of 8 bytes).

OUTPTR 7F1

RO

Pointer to the next location in
INGBUF that Mx4 cnC++ will
read from (expressed as an
offset from the start of the
buffer in multiples of 8 bytes).

Table 13: Dual Port RAM Cubic Spline Contouring Ring Buffer

Mx4 cnC++ Host-Based Programming

Communication Protocols Revisited

Asisevident inMx4 cnC++ Dual Port RAM Organization, many "windows" in
the DPR are protected with access bytes. Table 6-11 lists each of the protected
windows and its corresponding access bytes:

Mx4 HOST
WINDOW WINDOW ACCESS ACCESS
DESCRIPTION BYTE BYTE
000h - 08Dh, Interrupt and Status Registers 3FCh 3FDh
3FEh, 7FEh
0D3h - OE2h Actual Position 0C3h 0CBh
OE3h - OF2h Actual Velocity 0C4h 0CCh
OF3h - 102h Following Error 0C5h 0CDh
103h - 112h Index Position 0C6h 0CEh
113h - 114h Encoder/Servo Status 0C7h OCFh
0A7h - 0B6h Probe Position 0C8h 0DOh
097h - 0A6h Multi-Turn Position 0C%h 0D1h

Table6-11: AccessBytesfor DPR Windows

(It is noteworthy to remember that single byte values in the DPR are always
protected by the arbitration hardware built into the DPR.)

A typical protocol that a host would use to access a 'protected' window would

be:

NSNS

Host writes 01h to the host access byte
Host pollsthe DSP access byte until it reads 00h
Host accesses window
When the host is finished with the window, host writes 00h to the host
access byte.

Following this convention when accessing the windows listed in the above table

ensures dataintegrity.

The RTC Window of the DPR is not protected with the access byte scheme,
however it does use a different access protocol. As will become evident in later
sections, Mx4 cnC++ checks for RTCs by looking for a host-written command
code in location 3C2h. If Mx4 detects acommand code, it interrupts the RTC data

Mx4 cnC++ User's Guidevl.1

6-17

Mx4 cnC++ Host-Based Programming

and when finished, writes a zero to the RTC command code register (3C2h).
Therefore, the host knows it can send an RTC command code only when location
3C2h has a zero value and Mx4 knows there is an RTC to process when location
3C2h contains a non-zero command code. The host should follow a procedure
when writing RTCs to the DPR such as:

1. Host pollslocation 3C2h until it reads 00h
2. Host writes RTC datato locations 3C3h + as needed
3. Host writes RTC command code to location 3C2h

Handling Mx4 cnC++ Software/ Hardware I nterrupts

6-18

Mx4 cnC++ signals interrupts to the host computer through both hardware and
software. The host has the option of responding to "hardware" interrupts across
the bus via an interrupt source routine or simply polling for "software" interrupts
inthe Mx4 cnC++ DPR.

Mx4 cnC++ signals interrupts to the host by setting a bit(s) in the DPR's 7FEh
location. Thisin turn, generates a hardware interrupt to the host via the bus
interrupt signals. The interrupt type and interrupt source information from Mx4
cnC++ is written to the Status Registers Block of the DPR via the DSPSTATY,
DSPSTAT2 and INTAXIS registers.

The host may check for interrupts by "software" by polling location 7FEh for set
bits. An important exception to the communication protocols of the previous
section is made here: read accesses (or polling) to location 7FEh do not require
the use of the access bytes due to its single byte status. All host-write accesses
to 7FEh must, however, use the MINTACC access byte. If the host detects an
interrupt by polling 7FEh, it may interrogate the proper status registers
(remember to use the access bytes) for interrupt type and source information.

If the host incorporates an interrupt source routine responding to bus interrupt
signals, the access to 7FEh serves two purposes. First, an access to the 7FEh
location terminates the hardware interrupt. Second, the 7FEh byte bit codes some
interrupt source data which directs the host as to which status registers should
be interrogated for further interrupt type and source information. For example, if
an axis z motion complete interrupt occurs, bit 1 of location 7FEh (HOSTINT) is
set. The interrupt type is coded with a set bit 4 of DSPSTAT1 (000h). The source,
axis 2, isevident as bit 1 of location 005h is set.

Mx4 cnC++ Host-Based Programming

interrupt status register bits or 7FEh location bits. The host,
after reading or recognizing an 'interrupt’ location must reset
bits of its own discretion.

@ Note: It is important to remember that Mx4 cnC++ does not reset

M x4 cnC++ Host Programming ..RTCs & Contouring

Mx4 cnC++ programming includes both contouring and RTC Mx4 cnC++ modes
of motion. Typical programming applications consist of a combination of
contouring and RTCs, and any combination of the two types of commands is
possible of the four axes.

Real-Time Commands

Real-Time Commands (RTCs) are sent to Mx4 cnC++ viathe Red-Time Command
Window in the DPR (locations 3C3h to 3FBh). RTCs consist of a single byte
command code and an argument list. As was introduced in Communication
Protocols Revisited, the host should follow this procedure when writing RTCs to

the DPR:
1. Host pollslocation 3C2h until it reads00h *
2. Host writesRTC argumentsto locations 3C3h + (as needed)

3. Host writesRTC command code to location 3C2h (RTC command code
register)

valid command code. If a valid code is detected, Mx4 cnC++
interprets the RTC and writes 00h to location 3C2h. The host
should verify that Mx4 has executed a previously transmitted
RTC before writing another by checking the RTC command
coderegister for value Q0h.

@ Note: Mx4 cnC++ polls for RTCs by checking location 3C2h for a

Mx4 cnC++ User's Guidevl.1 6-19

Mx4 cnC++ Host-Based Programming

6-20

When writing an RTC argument list to the RTC Window, the host must follow
theserules:

1. RTCargument list aways starts at DPR location 3C3h.

2. RTC arguments must be written to the DPR in the order they appear as
arguments in the "ARGUMENTS" declaration of RTC listing (see Mx4
cnC++ Host-Based Programming Command Listing in Chapter 5).

3. When writing multi-byte value RTC arguments, write LSB to MSB order.

4. Argument lists for multi-axis RTCs must be written to the DPR in
increasing-axis-number order.

These rules are illustrated in the following examples that depict RTCs written to
the Mx4 cnC++ DPR Real-Time Command Window.

following examples do not need to be written to (for the
examplesin question). Mx4 cnC++ determines which locations
contain valid data via the command code and n argument (if

any).

@ Note: DPR locations marked "xxh" or "not necessary" in the

Mx4 cnC++ User's Guidevl.1

Mx4 cnC++ Host-Based Programming

Example 1
Preset axis 3 position to 00112233h.

Usethe HOME RTC,

n : 04h
pset3 : 00112233h

The host must write to the following DPR locations as specified:

DPR
ADDRESS BYTE SYMBOL DESCRIPTION
03C2h 68h - RTC command code
03C3h 04h n single byte form
03C4h 33h pset3 low byte of low word
03C5h 22h pset3 high byte of low word
03Céh 11h pset3 low byte of high word
03C7h 00h pset3 high byte of high word
03C8h xxh - not necessary
: xxh - not necessary
03FBh xxh - not necessary

6-21

Mx4 cnC++ Host-Based Programming

6-22

Example 2

Assuming current positions of zero for axes 2 and 4, we want to move axis 2 to
the target position of 234567h and axis 4 to the target position of 112233h. Let's
also assume that we want this move to be accomplished with the slew rate
velocity of 200000h (200000h/216 counts/200 nsec) and acceleration of 150h
(150h/215 counts/(200 m;ec)z) for both axes. The values for the data parameters

are:

Usethe AXMOVE RTC,

n
accy .
posy :
vely
accy
posy :
Vely

OAh
0150h
00234567h

0150h
00112233h
(00200000h

The host must write to the following DPR locations as specified:

DPR

ADDRESS BYTE SYMBOL DESCRIPTION
03C2h 60h - RTC command code
03C3h 0Ah n single byte for n
03C4h 50h accy low byte
03C5h 01h accy high byte
03C6h 67h posp low byte of low word
03C7h 45h posy high byte of low word
03C8h 23h posy low byte of high word
03C%h 00h posy high byte of high word
03CAh 00h velp low byte of low word
03CBh 00h velo high byte of low word
03CCh 20h velo low byte of high word
03CDh 00h velo high byte of high word
03CEh 50h accy low byte
03CFh 01h accy high byte
03DO0h 33h pos4 low byte of low word
03D1h 22h posy high byte of low word
03D2h 11h posy low byte of high word
03D3h 00h posg high byte of high word

Mx4 cnC++ User's Guidevl.1

Mx4 cnC++ Host-Based Programming

03D4h 00h vely low byte of low word
03D5h 00h vely high byte of low word
03D6h 20h vely low byte of high word
03D7h 00h vely high byte of high word
03D8h xxh - not necessary

: xxh - not necessary
03FBh xxh - not necessary

Example 3

Set afollowing error interrupt at 100, 101, 102 and 103 counts for axes 1 through

4, respectively.

Usethe FERINT RTC,

n
ferq
fery
ferg
fery

OFh
0064h
0065h
0066h
0067h

The host must write to the following DPR locations as specified:

DPR
ADDRESS BYTE SYMBOL DESCRIPTION

03C2h 67h - RTC command code

03C3h OFh n single byte for n

03C4h 64h ferq low byte

03C5h 00h fery high byte

03C6h 65h fero low byte

03C7h 00h fero high byte

03C8h 66h ferg low byte

03C%h 00h ferg high byte

03CAh 67h ferg low byte

03CBh 00h ferg high byte

03CCh xxh - not necessary

: xxh - not necessary
03FBh xxh - not necessary

6-23

Mx4 cnC++ Host-Based Programming

6-24

Contouring

Contouring commands consist of segment move commands transferred from the
host to Mx4 cnC++ via the Contouring Ring Buffers [2nd order; DPR locations
120h to 3bfh, cubic spline; DPR locations 400h to 7EFh]. Each segment move
consists of a 32-bit position value and 32-bit velocity value for each axisincluded
in the contouring motion. The ring buffer size is (2nd order; 672 bytes) (cubic
spline; 1008 bytes), and thuswill hold (2nd order; 84) (cubic spline; 126) segment
move [position, velocity] commands.

Mx4 cnC++ performs either 2nd order or cubic spline interpolation on the 8-byte
segment move data points. The interpolation time interval is programmable via
the BTRATE (2nd order) or CUBIC _RATE (cubic spline) commands. The
segment move ‘commands’ are executed in sequence, with execution commencing
only when the previously commanded segment move is compl ete.

The following contouring discussion is specific to 2nd order contouring. With
reference to the cubic spline contouring ring buffer, the discussion is relevant to
cubic spline contouring.

Before beginning a contour, the 2nd order contouring ring buffer must first be
initialized with contouring points (segment move commands). The host must load
the segment move commands into the DPR in round-robin format. The following
rules must be followed when initializing the ring buffer with data.

1. Data should begin in the segment command data area indicated by the
value of the Mx4 cnC++ pointer OUTPTR, loaded at incrementing
addresses.

2. Position and velocity are interleaved, position first.

3. Multi-byte position and velocity are written to the ring buffer in LSB to
MSB format.

4, For multi-axis contouring, the position/velocity pairs for each axis
involved are interleaved, written to the ring buffer in increasing-axis-
number order.

5. Host should update the value of the host pointer INPTR to [offset of
last segment move command + 1].

Note:

location 3BFh

Mx4 cnC++ Host-Based Programming

The ring buffer is structured such that the next byte after

is at location 120h; so the host must implement

a roll-over to 120h after location 3BFh when loading data to

the ring buffer

(and/or aroll-over from 83 to 0 in the value of

host pointer INPTR).

Theserules areillustrated in the two examples of Fig. 6-4.

Contouring with Axis 2

10 Contouring 'Points' Loaded To Rin

INPTR ®
X+79
X+78
x+77
X+76
X+75

addr x

Fig. 6-4

Contouring with Axes 1 and 3
g Buffer 10 Contouring 'Points' Loaded To Ring Buffer

INPTR ®

VEL, HH point #10 for axis 2

y+159 VEL, HH point #10 for axis 3

VEL, HL

y+158 VEL, HL

VEL, LH

y+157 VEL, LH

VEL, LL point #10 for axis 2

y+156 VEL, LL

POS, HH point #10 for axis 2

y+155 | POS, HH

y+154 | POS, HL

y+153 POS, LH

y+152 | POS, LL point #10 for axis 3

POS, LL point #3 for axis 2

y+151 VEL, HH point #10 for axis 1

VEL, HH point #2 for axis 2

y+150 VEL, HL point #10 for axis 1

VEL, HL

VEL, LH

VEL, LL

POS, HH

y+17 POS, LH point #2 for axis 1

POS, HL

y+16 | POS, LL point #2 for axis 1

POS, LH point #2 for axis 2

y+15 VEL, HH point #1 for axis 3

POS, LL point #2 for axis 2

y+14 | VEL, HL point #1 for axis 3

VEL, HH point #1 for axis 2

y+13 VEL, LH

VEL, HL

y+12 VEL, LL

VEL, LH

y+11 POS, HH

VEL, LL

y+10 | POS, HL

POS, HH

y+9 | Pos, LH

POS, HL point #1 for axis 2

y+8 POS, LL point #1 for axis 3

POS, LH point #1 for axis 2

y+7 VEL, HH point #1 for axis 1

POS, LL point #1 for axis 2

- OUTPTR y+6 | VEL, HL

y+5 | VEL, LH
y+4 | VEL, LL
y+3 | POS, HH
y+2 | PoOs, HL
y+1 | Pos, LH
addr vy POS, LL " - OUTPTR

Contouring Ring Buffer Example

Asisevident in Rules 1 and 2, the DPR ring buffer area includes two pointers,
INPTR and OUTPTR. Both pointers have values expressed as an offset from
120h in multiples of 8 bytes (or a single segment move command). The pointer
valuesrange from 0 to 83, pointing to one of the 84 segment move command data
areasin thering buffer.

Mx4 cnC++ User's Guidevl.1

6-25

Mx4 cnC++ Host-Based Programming

6-26

OUTPTRisaMx4 cnC++ pointer. It indicates which of the 84 data areas of the
ring buffer Mx4 cnC++ will read the next segment move command from. Mx4
cnC++ increments OUTPTR as it reads data from the ring buffer. INPTR is a host
pointer. Its value indicates which datain the ring buffer the host should begin to
download additional contour data points.

Before initializing the ring buffer with contour data points, INPTR should equal
OUTPTR indicating that the ring buffer is empty. The host increments INPTR as
the ring buffer isinitialized with data. After ring buffer initialization it is essential
to ensure that INPTR aways leads OUTPTR so that Mx4 cnC++ is never starved
of segment move commandsto read after a START RTC isissued.

The host may issue a buffer breakpoint interrupt command (BBINT RTC) in order
that Mx4 cnC++ interrupts the host whenever the number of segment move
commands in the ring buffer falls below a programmed threshold. This provides a
system of informing the host when it should refresh the ring buffer with
additional segment move commands. The number of segment move commands
indicated by BBINT must always be greater than the number of segment move
commands read by Mx4 cnC++ during aring buffer refresh to prevent starvation.

When refreshing the ring buffer with additional segment move commands, Rules
2 through 5 should still be followed. Rule 1 isaltered asfollows:

1. Data should begin in the segment move command data area indicated
by value of host pointer, INPTR.

The START RTC starts the contouring motion with the argument of START
being a bit coding of the axes involved. Fig. 6-5 depicts a flowchart for a general
host contouring algorithm.

Mx4 cnC++ Host-Based Programming

Set Mx4 cnC++ interpolation interval
via BTRATE (2nd order contouring)
or CUBIC_RATE (cubic spline
contouring) command

Initialize ring buffer with
contour data points beginning
at 8-byte data space indicated

by value of OUTPTR pointer

Set INPTR to [offset of last
segment move command + 1]

Set buffer breakpoint
interrupt BBINT

Send START RTC

—mmmm—e. | —

Buffer
Breakpoint
Interrupt?

Refresh ring buffer data
beginning at 8-byte data space
indicated by value of INPTR

A J

Set INPTR to [offset of last
segment move command + 1]

I

Fig.6-5: Ring Buffer Contouring Algorithm Flowchart

Mx4 cnC++ allows the axes involved in a contouring motion to be changed "on
the fly" via the VECCHG (vector change) command (2nd order) or velocity
argument bit coding (cubic spline). For 2nd order contouring, upon the execution
of VECCHG, the contouring task assumes a new set of axes at the programmed
segment move command data space in the ring buffer. The VECCHG is triple
buffered in Mx4 cnC++, so up to three vector changes may be queued at any

Mx4 cnC++ User's Guidevl.1 6-27

Mx4 cnC++ Host-Based Programming

time. Mx4 cnC++ sends a "vector change buffer overflown" interrupt to the host
if the host attempts to queue more than three vector changes.

Changing contouring axes with cubic spline requires only a change in the axis-
coding bitsin the velocity argument upper nibble (see Cubic Spline Application
Notes).

Contouring motion in a particular axis may be terminated with a STOP command,
or if the emergency stop ESTOP_ACC input is active. Attempting to execute a
closed loop motion command such as VELMODE or AXMOVE for an axis while
that axis is involved in contouring motion (or vice versa) will result in a
"conflicting commands detected" host interrupt and the second command will be
ignored.

Mx4 cnC++ Host Programming Using C, C++, Visual
Basic or Visual C++

6-28

Programming for the Mx4 cnC++ card with the Host programming method may
involve many of the following programming items:

- transmitting RTCsto Mx4 cnC++

- sending contouring commands to Mx4 cnC++ in contouring applications

- create an interrupt service routine to process any Mx4 cnC++-to-host
interrupts

- check Mx4 cnC++ status bytes and error codes

- read Mx4 cnC++ system state variables such as position, velocity and
following error for user-feedback

- utilizethe PARREAD RTC for debug support

Mx4 cnC++'s powerful instruction set and comprehensive DPR data reporting
format enables the user to create application programs from the very simple to
complex. The experienced programmer may want to write low-level code that
deals with Mx4 cnC++ at the bit level through the 2K DPR interface. Others,
however, might want to start out with higher-level Mx4 cnC++ programming;
utilizing pre-defined functions and routines that take care of the lower-level Mx4
cnC++ programming aspects such as reading and writing bytes and utilizing the
correct Mx4 cnC++ DPR communication protocols.

Mx4 cnC++ Host-Based Programming
For further information about programming the Mx4 cnC++ with C, please refer to
the Mx4 & C Programmer’s Guide.

For further information about programming the Mx4 cnC++ with C++, Visual
Basic or Visual C++, contact DSP Control Group.

M x4 cnC++ Power-Up / Reset Software Initialization

Mx4 cnC++ User's Guidevl.1

A typica Mx4 cnC++ host programming application program should include a
standard initialization routine. Upon power-up, the Mx4 cnC++ card resets itself
just asit would asif it had received the RESET command from the host. After the
Mx4 cnC++ reset sequence is completed (signaled by ‘reset complete’ interrupt
to the host), the Mx4 cnC++ (and VECTOR, if installed) signature is written to the
DPR. If the post-reset signature is not complete, the reset was unsuccessful and
the Mx4 cnC++ system reset should be repeated. Following this initialization
sequence ensures that Mx4 cnC++ (and VECTORY, if installed) has been reset
and is ready to be programmed before the host programming commences. The
suggested initialization sequenceis depicted in the flowchart of Fig. 6-6.

6-29

Mx4 cnC++ Host-Based Programming

Mx4 cnC++ Power-Up or Reset

Mx4 cnC++

Reset-complete
interrupt received

Clear Reset-complete Interrupt Send RESET

command to Mx4 cnC++

A

Read Mx4 cnC++ (and VECTOR4,
if installed) signature

Is
signature complete

Continue Mx4 cnC++ Host Programming

Fig.6-6: Mx4cnC++ Power-Up / Reset Software Initialization Routine

6-30

7 M x4 cnC++ Status & Error
Reports

M x4 cnC++ Power-Up / Reset State

Upon power-up, the Mx4 cnC++ card resets itself just as it would as if it had
received the RESET RTC from the host. Upon completion of the reset, Mx4
cnC++ sends the 'reset finished' interrupt to the host. Thus, upon power-up of
the Mx4 cnC++ card, the host should wait for and then clear the 'reset finished'
interrupt generated by Mx4 cnC++. (See Chapter 6, Mx4 cnC++ Power-Up /
Reset Software Initialization.)

A Mx4 cnC++ reset resultsin the clearing of all Mx4 cnC++ parameters including
the 2K Dual Port RAM (DPR). Any programming of the Mx4 cnC++ card prior to
reset must be repeated.

Mx4 cnC++ Interrupts, Status Codes & Error Condition
Reportsto the Dual Port RAM

Mx4 cnC++ data reporting to the host includes a variety of interrupt conditions,
status codes and error conditions. Table 7-1 sums up these reports.

a detailed description of the Mx4 cnC++ DPR interface and

@ Note: Refer to Chapter 6 Mx4 cnC++ Host-Based Programming for
protocols for host writing and reading of the DPR.

Mx4 cnC++ User'sGuidevl.1 7-1

(efed 1xau uo panu NUOJ) SUONIPUOD 0413 pue SBPoD snkIS ‘sidnulu| PXIN T-/9|del

‘PapIeISIP S ‘PXIN Ag
paINJaXa 10U S| J01Jd 3y} pasned ey ,,(S)puewiwod Buoijjuod,, ay L
"PXIN 011USS SISIxXe Teyl BUIAJOAUI D1 1HV1S
Buinojuod e pue ‘ssaiboid ul uonow IAOTAA 10 IAOINXY 2
PXIN 01 1U3S SISIxe Teyl BuiajoAul
214 IAOINTAA 10 JAOIXY Ue pue ‘ssaiboid ul Buinouod T
ylimsixe ue 104
"1dnudiul |, pa1981ep SpuUeWWOod Bunoi|uol,,
e pRIA ||IMSaSeD BUIMO||0) 8] JO BUO0 AUV "AjsnosuelNWIS Sixe
awes ayl ul uonow D1y pue Bunojuod yiog auiquod o) Bundwaire
JO Jo.1J3 150y 8y} 1odal 01 sandes 1dnuiBul SIy] “(uoireziuebio
ddA vXIN 98S) T1V1SdSa 2isifial snieis 4dd o 9 1ig elA 1soy

3y} 0} pallodal Jdnuseul Jolse Ue S|, pa1dsiap SpueWIWIod Budljjuo),, 0 pa12919Q Sspuewwo) Bunoijjuod
uondasap puewwod | Nigyd 99s 0 0 ydnuau| euseIxg
uonduossp puewiwod TgNIDIN 89S 0 0 1dnussiu| 818 1dwod uono
uond1osap puUeWIWod MHYESOd 93 0 0 1dnuiaiu| wiodxealg uolnisod
uondIasap puewwod I NIXN| 89s (e} 0 ydnuseu| as|nd xepu|
uo11d ISP puewWOod | N Y34 98s 0O 0 1dnueiu| Jouig Buimo|jo4
1dnasu|
uondosep puewwod | THYI- 89s (e} (0] 1eH pue Josg Buimoljo
NOILdI¥0S3a a3lavn3 1dNYH3LNI JNVYN

ol1d 1SOH

(8fed 1xoU UO pPaNUIUOD) SUO IPUOYD J01IT PpUe SBP0D SNkIS ‘sidnuieiu| XN

U020 T-/ 9 L

"(oesw g) awin-feas ul parepdn

S19]qq1u 8y pue asind Xapul Ue sakedlpul Jig s v *(Uoreziuelio ¥da
X\ 98S) UETT U0Il20| ¥dd o 3|qqiu Jaddn ayy ut ,uniodsi as|nd
Xapulawi [eay, 8yl BIA SaxXe Inoj | Jo sas|nd Xepulay} Joliuow
Rew 150y ay3 ‘1dnueiul as|nd xapul ps|ceus-1soy ay) 03 Uofiippe u|

Buniodey as|nd Xepu|awl] [eay

"9AI0eU| S|
BUOo JBYl0 aYy1 a|Iym sa|bbol Apande (g 1o v) sjeubis jspodus ayy

JO 8U0 J0 sas|nd Jepodusd BUISO| S| XN 01 %Jeqpas} JSpodus ay} g
pUe ‘yoog < S!1unod Jolsd Buimo||oj syl T

:uosenb Ul sixe ay3 Joy 41 Jo1e

,SNIeIS JOpodus,, Ue SLI0dal XN "9INn|fe} afemprey Japodus Ue palislep

sey XA Teyr saedipul 31q J8s v (UomreziueBiO ¥d A ¥XIN 898S) UETT

uo11e90| Hd@ 40 3|qqgIu Jomo| 8y 01 pariodal SI ,Snieis Jepodaus,, ay L

SNeIS JBpodu]

uondiossp puewiwod 135440 39S (0] (0] paysiuld [poue)d 19s40

uond3sep puewwod SO TOONT 89S (0] (0] 1dnuisiu| 1507 Jepodug

uod1osap pUeLlWod g334S0d 89S Q @) 1dnueiu| 4Ieqpas A Isod
'sO1H AA0NTIA 10 LHV1S FAOINXY 8y 8Je spueluwiod
uonow ay] ‘indul /dO1S3T 8A1Ie J0 D1 dO1S pemndaxa Aisnoinaid
eeindoise o) Bunfey Apussaid si eyl sixe ue 1o} XN Aq panedal
S| PURLULLIOD UOI0W B Uaym patesauab si idniseiul ,paioudi puewiwod
D14, 8yl "(uomreziuebi0 Hda vXIN 88S) TLV1SdSa »esibel

snels Ydd Jo / g eIA IS0y ay) 01 pariodal s1 1dnussiul Joase siy L Q pa.louB | puewwiod O 1Y

NOILdI¥0S3a a31avN3 1dNYYIALNI AWVYN
oLy 1SOH

SUONIPUOY J04J3 puUe Sapo) snIelS ‘sidnuislu| #XIAl - :"JUod T-/ 8|0l

“(uoireziuebi0 Yda PXIN 88s) LNILSOH seisifal 1dn1iaiul 4da 40 shiq Ul paplodal
s1idnuisulay "1soy ayy 01 1dnudiul Jaing Bu il ul INo-uniemep,, e spuas XN

pue elep Jo N0 s1 Jayng Buli ay) ‘0oz Jou S1 A11D0[PA SIXe pateAllde
Aue pue 41d1NO=4.1dN| S19918p X\ dAIIe S| BU1IN0IU0D 3 IyM
awn Aue e J| 'ssalbouid uisi Buunojuod ajiym (s)Jeyng Bul ayrein
SpueLIWwod aAow Juawbas X N apinoid 01 1S0Y 8yl J0} [e11USsSa S| 1|

Joying Buly uj INO-uny ereq

"(uonezieB 10 ¥da vXIA 88S) LNILSOH JeisiBal 1dnusl ¥da 10 ¥
}1g 19S B Se pap09-1ig S| 1dnuLiul 3y “1soy ayy 03 dnieiul ve sfeubis
PXIN ‘D1 13S3Y Jo aouanbas dn-jamod ay3 jo uona|dwod uodn

pausiulL 18S9y

"(uoneziueb 10 ¥da PXIN 98S) LN|LSOH Risifal 1dnisiul ¥dq Jo €
11g eIA pariodal pue patessuab s1 idnuisiul 1Soy e ‘spueliod SHDDIA
9391Y] Uey) aJow Jayng Jo yaels, 01 sidwalie 1soy ay} | "uoionisul

ay} Jawa|duwil 0} SPAR| B4NQ 331U} S3Z1|1IN O LY OHODIA8YL

UMO|LBAQ Joying abuey)d 10109 A\

"uolre.e [pasp

/ UolreB BT /O 1S3 pawwrelBoid ayi y1im 1fey e 03 1yBnolg S| saxe
noy |fe Jo (Aue J1) uonow ayl ‘ndul /4O LS 8ANTR Ue S10918P HX N
usyM “(uomreziuebio Hdd vXIN 88S) LNI1SOH Jesibal idnieul
¥da 1o z 1geia pauodal siidnagilul sy idniisiul ue yiim 1soy ayl
01 (indul /4O 1S3) dois Aousbliswia Ue Jo 82Ua1INJ20 8yl s1iodal X N

pa1381ed 4O 1S3

uod1I9Sap pUeILOD | N|gd 89S

1dnueiu| uiodyealg ayng

‘19Sal

wais/s e wioyied 03 pssu Aew S0y 8yl ‘MHOOANIS 40 0 g lese

JO UO0119918p Uod "J0J1JS MO|}IBA0 XJIeIS [eusalul XA e 1iodal 0] pasn
S1 (YyTT UoIRI0| UdA ‘MHIOAHIS) B1AQ ,SNiels %IBYJ0AISS,, 8Y L

SNEIS H08UD OIS

NOI1ldId40s3a

a3anavN3
ol1d

1dNYHY3ILNI
1SOH

JNVN

8 VECTORA4

Mx4 cnC++ User'sGuidevl.1

Note: The following is a brief description of the functionality and
capabilities of the VECTOR4 drive control option. A more
detailed VECTOR4 description can be found in the VECTOR4
User's Guide (included with the VECTOR4 option).

VECTOR4 is an add-on daughter-board to the Mx4 cnC++ card (PC/AT, Multibus
and VME). VECTOR4 is an al digital AC servo controller for four axes of both
AC and DC motors. With the VECTOR4 add-on drive controller, Mx4 cnC++
controls brushless DC, variable reluctance, AC induction and brush-type DC
motors. Any combination of these motor technologies is programmable through
asingleinstruction. Some of the features of VECTOR4 are listed below:

a

a

(W

O 0O O O O

Closes current and velocity loops for four axes

State feedback optimum control algorithm along with modified vector
control for better stability

Programmable power el ectronics parameters

PWM (Pulse Width Modulation) outputs allow VECTOR4 to interface
to any generic output stage

Current limit is programmable

Full VECTORA4 debug support and state variable parameter reporting
Performs field weakening for brushless DC and AC induction motors
Current loop offset adjustment

Interfaces to Mx4 cnC++ through the DSP bus

81

VECTOR4

82

The VECTOR4 card interfaces to Mx4 cnC++ viatwo 25-pin headers (see Fig. 8-
1). The Mx4 cnC++/VECTOR4 combination requires a double-slot width in the
host bus card cage.

VECTOR4 Mx4 cnC++

[— | — IUI 000
- el
LI

I M
Fig.81. PC/AT Mx4 cnC++ with VECTOR4 Option

Mx4 cnC++ transmits to VECTORA4 a set of torque or velocity commands through
the DSP bus. VECTOR4 closes the velocity and/or torque loops and performs
commutation (see VECTOR4 functiona block diagram of Fig. 8-2). VECTOR4
uses state variable control rather than classical techniques such as lead-lag or
PID. In addition to providing superior performance, this approach simplifies the
task of tuning system parameters during initial system set-up. VECTOR4
linearizes the torque and current relations and closes a single composite current
loop similar to that of a DC brush-type motor. This technique is superior to
conventional vector control which requires closing three current loops and
resultsin amotor-speed dependent current loop frequency response.

Mx4 cnC++ User'sGuidevl.1

VECTOR4

Frequency
Command

Commutation Encoder
Velocity Velocity () Torque
Command y Control
Mx4 cnC++ PWM Signal g
—>

Transformations [| Generation INHIBIT >
’
Field N Field
Command Control
'

lgs

PWM Signals

Mx4 cnC++ Phase Currents
Transformations

. Ir
ADC
Phase Is
Generator [———

Observer
Algorithm

Digital Encoder Signals

Filter

Fig.8-2: Mx4 cnC++VECTOR4 Functional Block Diagram

An industrial motor may be a brush type DC, brushless DC or AC induction
machine. Instructions provided in VECTOR4 enable the user to select the
appropriate technology suitable for their application. The encoder mounted on
the motor shaft may be an incremental encoder alone (for AC induction motor or
brush type DC motor control) or the combination of incremental and
commutation encoders (for brushless DC motor control applications).

The commutation techniques used for brushless DC technology use only a 3-bit
hall sensor or similar, as well as incremental encoder signals. Thisis in contrast
with the use of an expensive resolver and resolver-to-digital converter. The
incremental encoder signals enter into the Mx4 cnC++ card through the card
connectors, whereas commutation encoder signals interface directly to
VECTOR4.

83

VECTOR4

VECTOR4 Programming Capabilities

84

Like Mx4 cnC++, VECTOR4 is based on a powerful kernel that provides a very
flexible programming platform. VECTOR4 supports both the host based and
DSPL programming methods. VECTORA4's commands provide the user an easy-
to-use interface to VECTOR4's field-oriented control core. The VECTOR4

command summary is categorized as follows:

Initialization

Initialization commands encompass those instructions used to define a particul ar
set-up. For example, programming the type of motor being used or the encoder

characteristics of an axis.

COMMAND DESCRIPTION
ENCOD_MAG encoder line number
FLUX_CURRENT bipolar field flux value
MOTOR_PAR set motor parameter
MOTOR_TECH select motor technology
VECTOR4_BLOCK block further instructions to VECTOR4

Control Parameter

Instructions used to set state variable control parameters and to tune the control

loops.
COMMAND DESCRIPTION
CURR_OFFSET current loop offset adjustment
CURR_PID program current loop gains

Mx4 cnC++ User'sGuidevl.1

Power Stage

VECTOR4

Power stage commands are used to characterize and define the VECT OR4-output

stage interface.

COMMAND DESCRIPTION
CURR_LIMIT current limit setting
PWM_FREQ set VECTOR4 PWM output frequency

System Diagnostic

System diagnostic instructions provide the Mx4 cnC++ programmer powerful

debug support.

COMMAND

DESCRIPTION

VIEWVEC

select VECTOR4 variable feedback

85

VECTOR4

This page intentionally blank.

8-6

O Mx4 enC++ Specifications

Performance

ITEM

DESCRIPTION

Servo Loop Update

120 nsec (al axes included)

Control Algorithms

State Feedback Multi-Input Multi-Output
Controller, Kalman Filter, Robust Control, PID,
Notch

Block Execution Rate (programmable)

2nd Order: 5 to 20 msec
Cubic Spline: 1 to 100 msec

Position Range

+/- 2, 147, 483, 650 counts, rollover, +/- 1 count

Position Capture

100 ns max. delay from trigger

Velocity Range

0to 1,280,000 counts/sec, +/- 1 count

Acceleration Range

0 to 50,000,000 counts/sec?, +/- 1 count

Synchronization

Unlimited number of axes can be synchronized to
the same servo cycle

Hardware
ITEM DESCRIPTION
Processing Quad DSPs in Hyper-Cube Architecture, 36 MIPS
Analog Output 16-bit parallel DAC per axis, 300 uV resolution,
-10v to +10v output
Input/Output
ITEM DESCRIPTION

Protective Inputs

ESTOP/ emergency stop [1]

External Interrupts

IPRO, /PR1L [2]

General Purpose Inputs

User-defined inputs [10], TTL logic

General Purpose Outputs

User-defined outputs [3], TTL logic

Mx4 cnC++ User'sGuidevl.1

91

Mx4 cnC++ Specifications

92

Position Encoder Feedback

ITEM

DESCRIPTION

Encoder Type

A/B quadrature or single-ended with "1" (index
pulse) channel [optional]

Maximum Encoder Count 5 MHz
Maximum Encoder Pulse 1.25 MHz
Electrical
ITEM DESCRIPTION
+5v Mx4 cnC++ Supply Voltage MIN = 4.75v
NOM = bv
MAX = 5.25v
Operating Free Air Temperature Range] 0°C to 70°C
Power Consumption
ITEM DESCRIPTION
+5v MAX = 3A
+12v MAX = 250mA
-12v MAX = 250mA
Mechanical
ITEM DESCRIPTION

PC/AT Mx4 cnC++ Interface
Connector

protected header, .100 x .100 centers, center and
dual polarized

PC/AT Mx4 cnC++ 1/O Connector

protected header, low profile, .100 x .100
centers, center polarized

PC/AT Mx4 cnC++ Synch Connector

AMP 640457-4 friction lock header

Mechanical Dimensions

See Fig. 9-1

Mx4 cnC++ Specifications

33.65¢cm |

N LRy
N
L]

11.43cm

'
- | M [

Fig.9-1: PC/AT Mx4 cnC++ Mechanical Dimensions

Mx4 cnC++ User'sGuidevl.1

Mx4 cnC++ Specifications

94

This page intentionally blank.

